
Directorate-General for Finance

Directorate for Budget and Financial Services

Unit for Reengineering of the Financial Information Systems

FMS environment and Development Guidelines and

Standards

https://epintranet.in.ep.europa.eu/home/ep-directory/organisation-chart.html?action=structureComposition&node=09A&type=SERVICE_NODE&withoutType=EXTERNAL&order=ORDER_BY_PROTOCOL_ORDER&structure=Directorate+for+Budget+and+Financial+Services&language=en
https://epintranet.in.ep.europa.eu/home/ep-directory/organisation-chart.html?action=structureComposition&node=09A40&type=SERVICE_NODE&withoutType=EXTERNAL&order=ORDER_BY_PROTOCOL_ORDER&structure=Unit+for+Reengineering+of+the+Financial+Information+Systems&language=en

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page i

TABLE OF CONTENT

1. GENERAL INTRODUCTION ... V

1.1. PURPOSE ... V

1.2. GLOSSARY .. V

2. CONTEXT ... 1

2.1. MAIN PARLIAMENT SITES .. 1

2.2. METHODOLOGY .. 1

2.3. FMS ORGANISATIONAL SET-UP ... 1

2.4. SAP COMPETENCE CENTER .. 1

3. FMS ARCHITECTURE .. 3

3.1. APPLICATION ARCHITECTURE ... 3

3.2. CONNECTIVITY BETWEEN SAP FMS AND LEGACY SYSTEMS 5

3.3. FMS APPLICATION LANDSCAPE ... 5

ANNEX 1 - SAP DEVELOPMENT GUIDELINES ... 7

1. PURPOSE ... 12

2. GENERAL DEVELOPMENT GUIDELINES .. 13

2.1 SCOPE ... 13

2.1.1 Aim of development rules .. 13

2.1.2 General standard ... 13

2.2 UPDATING DATA IN SAP DATABASE ... 15

2.3 MODIFICATION OF STANDARD PROGRAMS ... 15

2.3.1 The alternative solutions ... 16

2.3.2 OSS Notes application ... 17

2.4 AUTHORISATIONS .. 18

2.5 LANGUAGES & TRANSLATIONS ... 19

3. ABAP PROGRAMMING RULES ... 19

3.1 GENERAL RECOMMANDATIONS .. 20

3.1.1 Date / Time ... 20

3.1.2 Date / Time Format .. 20

3.1.3 Decimal Notation ... 20

3.1.4 Re-usable aspects .. 20

3.1.5 Selection-screens ... 21

3.1.6 Data Update ... 22

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page ii

3.1.7 Record Locking .. 22

3.1.8 Using SAP Runtime Memory ... 23

3.1.9 Debugging breakpoints .. 23

3.1.10 Error handling ... 23

3.1.11 Modularity aspects ... 33

3.1.12 Pretty Printer ... 34

3.1.13 Obsolete ... 34

3.1.14 Documentation .. 35

3.1.15 Performance... 35

3.2 ABAP PROGRAMMING TECHNIQUES .. 39

3.2.1 General .. 39

3.2.2 Dialog Modules .. 39

3.2.3 Function Modules ... 40

3.2.4 Include Modules... 40

3.2.5 Module Pool ... 40

3.2.6 Screen Flow Logic .. 40

3.2.7 Messages ... 41

3.2.8 Data Definition ... 41

3.2.9 Reports ... 41

3.2.10 Forms ... 42

3.2.11 S/4 HANA Extensibility .. 43

3.2.12 Managing Custom Code .. 51

4. APPENDIX .. 54

4.1 APPENDIX A - CODE DOCUMENTATION ... 54

4.2 APPENDIX B - PROGRAM DATA NAMING CONVENTIONS ... 55

ANNEX 2 - SAP PROCESS ORCHESTRATION, AIF AND BRF+ GUIDELINES 60

1. SAP PROCESS ORCHESTRATION .. 1

1.1 ROLES ... 1

1.2 CAPABILITIES ... 1

2. ENTERPRISE SERVICES ... 2

2.1 GUIDELINES WHEN TO USE ENTERPRISE SERVICES .. 2

2.2 ENTERPRISE SERVICES DESIGN GUIDELINES .. 2

2.2.1 Outside-in approach .. 3

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page iii

2.2.2 Interface patterns ... 3

2.2.3 Naming conventions ... 3

2.2.4 Message structure ... 3

2.2.5 Error handling .. 4

2.2.6 Database actions .. 4

2.2.7 Enhancing Enterprise Services ... 4

2.2.8 ABAP proxy implementation ... 4

3. SAP PI NAMING CONVENTIONS ... 5

3.1 NAMING RULE NOTATION ... 5

3.2 SOFTWARE CATALOG ... 5

3.2.1 Product Software & Software Component Structure 5

3.2.3 SLD Product .. 7

3.2.4 SLD - Software Units .. 7

3.2.5 SLD - Software Components ... 9

3.3 SLD OBJECTS .. 10

3.3.1 Technical Systems .. 10

3.3.2 Business System ... 10

3.3.3 Business Sytem Group ... 12

3.4 ENTERPRISE SERVICE REPOSITORY OBJECTS .. 13

3.4.1 Folder .. 13

3.4.2 Namespace .. 13

3.4.3 Process Integration Scenario & Action .. 14

3.4.4 Data Type .. 14

3.4.5 Data Type Enhancement ... 15

3.4.6 Message Types .. 15

3.4.7 Fault Message Type .. 15

3.4.8 Service Interface ... 16

3.4.9 External Definition ... 18

3.4.10 Interface Objects – Context Object .. 18

3.4.11 Message Mapping ... 19

3.4.12 Mapping Templates .. 19

3.4.13 Operation Mapping ... 19

3.4.14 Imported Archive ... 21

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page iv

3.4.15 Function Library .. 21

3.5 ERROR HANDLING ... 21

3.6 INTEGRATION DIRECTORY OBJECTS .. 23

Directory – Business Service.. 23

3.6.1 Partner ... 23

3.6.2 Business System ... 23

3.6.3 Business Component ... 23

3.6.4 Receiver Rule ... 24

3.6.5 Sender Agreement .. 24

3.6.6 Receiver Agreement ... 24

3.6.7 Integrated Configuration .. 24

3.6.8 Communication Channnel ... 24

3.6.9 Configuration Scenario .. 25

3.6.10 Value Mapping Group .. 25

3.6.11 Integration Flow .. 25

3.6.12 AlertRule .. 25

4. APPLICATION INTEGRATION FRAMEWORK ... 26

4.1 INTRODUCTION .. 26

4.2 USAGE .. 28

4.2.1 Error Correction .. 28

4.2.2 Translation - Fix Values ... 28

4.2.3 Translation - Value Mapping .. 28

4.2.4 Data Checks ... 28

4.2.5 Actions ... 28

5. BUSINESS RULE FRAMEWORK PLUS (BRF+). ... 29

6. INTEGRATION OF AIF WITH BRF+. .. 31

6.1 RULES FOR USAGE. .. 31

6.2 AIF SPECIFICS WITH BRF+ ... 32

6.2.1 Structure Mapping .. 32

6.2.2 Value Mapping .. 33

6.2.3 Check ... 33

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page v

1. GENERAL INTRODUCTION

1.1. Purpose

The main objective is to present the FMS environment and Development Guidelines and

Standards.

1.2. Glossary

Abbreviation Description

DG ITEC Directorate General for Innovation and Technological Support

DG FINS Directorate General for Finance

EP European Parliament

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page i

2. CONTEXT

2.1. Main Parliament sites

Parliament has three main sites:

 Strasbourg, where ordinary part-sessions are held (one week a month on average);

 Brussels, which mainly hosts parliamentary committee meetings and the political

groups; the additional part-sessions are held there; MEPs' offices, political group

secretariats and some Parliament Secretariat departments are located there;

 Luxembourg, where the other Parliament Secretariat departments are located.

In those three cities, Parliament occupies a number of buildings containing offices and

meeting rooms; it also has information offices in all EU Member States.

Mobility is a major feature of Parliament's working environment and comes into play at

various levels:

 between the main sites - Brussels, Luxembourg and Strasbourg - depending on the

Parliament activity concerned;

 within each site, all of which are made up of a number of buildings;

 between premises, within EU Member States, which may or may not be owned by

Parliament;

 more globally for specific user categories (nomadic workers or teleworkers).

2.2. Methodology

The suite of current financial applications at EP are not based on SAP. FMS uses ASAP

methodology of SAP.

2.3. FMS Organisational Set-up

DG FINS is responsible for FMS analysis, development, testing and successful passing to

operation (successful go-live). DG FINS manages the contracts associated to functional

analysis, implementation and testing and until FMS go-live, ensures contractual coverage for

SAP BASIS support, which will be taken over by DG ITEC after the go-live. Considering that

at present most of the EP applications are in-house java applications, FMS had to develop

their own development guidelines and standards which are part of this document.

DG ITEC is responsible for infrastructure, hosting, data center services and security.

2.4. SAP Competence Center

To support FMS and in view of other projects at EP, the business related elements will

remain with DG FINS after the go-live, while DG ITEC will continue providing, SAP

Enterprise Support, Hosting and Security Services.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page ii

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page iii

3. FMS ARCHITECTURE

3.1. Application Architecture

The following diagram gives a high-level overview of the applications / components in the

different layers; a short description follows below. This picture shows the actual

configuration with respect to the development and integration systems.

SAP S/4HANA

SAP S/4HANA is the latest generation of SAP’s “Enterprise Resource Planning” (ERP) suite.

SAP S/4HANA is a business process management application that allows businesses,

organizations or institutions to manage and automate all day-to-day business processes

(like back office functions, services, task and human resources). ERP applications

integrate all facets of an operation including finance, logistics, product planning, and

development, manufacturing and sales and marketing in a single application.

SAP S/4HANA is based on an in-memory platform leading to significant performance gains.

In addition, SAP is re-architecting the ERP suite to optimize all processes by profiting from

the in-memory technology combined with a modern user interface.

SAP Solution Manager

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page iv

SAP Solution Manager is used for system monitoring, transports and test sequences

encoding and execution (Test Suite.

For analysis performance issues SAP WILY Introscope, a tool used by SAP Solution Manager,

will be used.

GRC Access Control

SAP GRC provides solutions for Governance, Risk and Compliance. For FMS SAP Access

Control, as part of GRC, is installed to streamline the process of managing and validating

user access to applications and data. GRC is installed as an Add-On to SAP S/4HANA.

SAP Process Orchestration

FMS use Process Orchestration for its integration capabilities needed between the FMS and

legacy systems.

SAP Application Interface Framework (SAP AIF)

SAP Application Interface Framework is a component that provides a central monitoring

and error handling cockpit for any type of interface. SAP AIF moves the error handling

away from IT to the business drastically reducing the time to handle problems. In addition,

it speeds up interface building by providing a framework in which common tasks (for

example mapping and data validation) can be done using customizing instead of coding in

SAP S/4HANA (instead of SAP Process Orchestration).

SAP AIF is installed as an Add-On to SAP S/4HANA.

Adobe Document Services (ADS)

ADS enables form-based processing of business data. It is used for creating PDF-based

output forms based on the Adobe Forms technology like dunning letters, VAT exception

forms, etc.

ADS is a Java-based component and is therefore deployed on the Java Application Server

for SAP Process Orchestration.

SAP Fiori Frontend Server (FES)

The FES delivers the front-end software components to run SAP Fiori applications. This

includes the HTML5 libraries required to run SAP Fiori applications, the components

required to run the SAP Fiori launchpad (which is the central entry point for most users of

the SAP FMS solutions), and the technical components (SAP Gateway) required to call the

business logic in SAP S/4HANA based on OData services.

SAP Content Server- MaxDB

FMS will use as content server MaxDB, which is is used to store the documents related to

FMS.

Web Dispatcher

The Web Dispatcher is a SAP component which serves as the entry point for HTTP(s)

requests into the SAP system and is part of the recommended deployment scenario for

using SAP Fiori on SAP S/4HANA. The Web Dispatcher is capable of providing various

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page v

functions in an SAP landscape and for FMS there are the load balancing and reverse proxy

functionality that will mainly be used.

3.2. Connectivity between SAP FMS and Legacy Systems

FMS follows EP IT recommendations and the preferred way of communication between two

applications is webservices. When webservices are not possible, in the case of EP legacy

applications due to their obsolete technology or applications residing outside EP, file

exchanged is used.

All interfaces with the legacy applications use SAP Process Orchestration as middleware

(Enterprise Service Bus) or NWGW (Netweaver Gateway).

The following diagram gives an overview of the types of communication used:

3.3. FMS Application Landscape

FMS has a considerable number of applications around, mainly applications that prepare

payments and contracts.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page vi

Application preparing payments are mainly the set of PAM applications (for MEP related

payments), NAP (for staff salaries) and MISS (for staff missions). All these legacy

applications calculate the payments to be done and the payment lot is transferred to FMS

where the payment validation workflow involving four different actors is managed.

Contractual applications (FLUID+, NewINVI and WebContracts) deal with the different

types of contracts the EP manages. Once contracts are signed a purchase order is create

(or updated) in FMS through interface.

Other applications such as CODITC, HRM and SIDEP are also interfaced with FMS in order to

create business partners information. Furthermore, most of the above mentioned

applications are also interfaced with FMS to retrieve and/or provide cost accounting

information.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page vii

ANNEX 1 - SAP DEVELOPMENT GUIDELINES

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page viii

Financial Management System

SAP Development Guidelines

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page ix

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page x

Table of contents

1. PURPOSE ... 12

2. GENERAL DEVELOPMENT GUIDELINES .. 13

2.1 SCOPE ... 13

2.1.1 Aim of development rules .. 13

2.1.2 General standard ... 13

2.2 UPDATING DATA IN SAP DATABASE ... 15

2.3 MODIFICATION OF STANDARD PROGRAMS ... 15

2.3.1 The alternative solutions ... 16

2.3.2 OSS Notes application ... 17

2.4 AUTHORISATIONS .. 18

2.5 LANGUAGES & TRANSLATIONS ... 19

3. ABAP PROGRAMMING RULES ... 19

3.1 GENERAL RECOMMANDATIONS .. 20

3.1.1 Date / Time ... 20

3.1.2 Date / Time Format .. 20

3.1.3 Decimal Notation ... 20

3.1.4 Re-usable aspects .. 20

3.1.5 Selection-screens ... 21

3.1.6 Data Update ... 22

3.1.7 Record Locking .. 22

3.1.8 Using SAP Runtime Memory ... 23

3.1.9 Debugging breakpoints .. 23

3.1.10 Error handling ... 23

3.1.11 Modularity aspects ... 33

3.1.12 Pretty Printer ... 34

3.1.13 Obsolete ... 34

3.1.14 Documentation .. 35

3.1.15 Performance... 35

3.2 ABAP PROGRAMMING TECHNIQUES .. 39

3.2.1 General .. 39

3.2.2 Dialog Modules .. 39

3.2.3 Function Modules ... 40

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xi

3.2.4 Include Modules... 40

3.2.5 Module Pool ... 40

3.2.6 Screen Flow Logic .. 40

3.2.7 Messages ... 41

3.2.8 Data Definition ... 41

3.2.9 Reports ... 41

3.2.10 Forms ... 42

3.2.11 S/4 HANA Extensibility .. 43

3.2.12 Managing Custom Code .. 51

4. APPENDIX .. 54

4.1 APPENDIX A - CODE DOCUMENTATION ... 54

4.2 APPENDIX B - PROGRAM DATA NAMING CONVENTIONS ... 55

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xii

1. PURPOSE

The purpose of having a common approach to the creation and maintenance of

development objects is to ensure that a level of standardization is achieved. This will

provide common procedures and development methods that yield quality assured

products and can easily be transported across environments and systems. The

benefits in this are an overall reduction of costs by avoiding duplication of

development efforts and the ability to integrate data and systems now and in the

future.

The key supporting principles for these standards are to:

• support existing standards and procedures

• undertake only a minimum level of development

• re-engineer the business process, not the software

• enable logical and physical integration of systems now and in the future

• facilitate data consolidation

• maintain system integrity at all times

• minimize risks

• support common business processes

• facilitate the use of common controls

• support the use of common data and data definitions

• Keep It Simple

The key objectives for these standards are to:

• establish common standards for SAP FMS developments

• provide standards and recommendations on best practice

• obtain synergies and minimize costs in the development process

• avoid duplication of development effort

• create easily maintainable developments

[Please note: The Project Manager and the Quality Manager have to revise this

document before it is used by the project]

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xiii

2. GENERAL DEVELOPMENT GUIDELINES

2.1 Scope

These standards shall be applied to all objects and developments within the

instances of the SAP FMS platform. All development work shall also be in

compliance with applicable procedures at the EP.

2.1.1 Aim of development rules

A specific development must respect a certain number of rules in order to ensure the

high quality of a new functionality .

The major quality requirements for specific programs are :

 Satisfaction of all the functional & business requirements

 Optimisation & performances

 Robustness through efficient error management and unexpected program
behavior management (execution logs, messages to users, to the
operating teams)

 Adaptability (easy and quick implementation of)

 Security (authority-check & specific transactions)

 Transferability (large documentation in ABAP code, in program
documentation and in technical specification)

 Maintainability

 User-friendliness (standardisation of programs)

 Re-usability (components enable to be reused within other developments)

2.1.2 General standard

The following is a "quick guide" to a good programming practice. Most of these items
are discussed in greater detail later in this document.

 No change to any standard programs/objects without IT validation (except
OSS notes)

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xiv

 Check the version of the object that you want to modify to be the same one
with the one in Production. If not, please investigate.

 No transport to Production without validation

 Before starting any development work, one should make sure that no existing
functionality satisfies the same requirements

 Always use Extended Program Check for ABAP Programs as a tool for
extended syntax checking.

 Always use English in every aspect of development.

 Use the "Pretty Printer" function in the ABAP Editor to properly format program
code. ABAP editor settings should have “INDENT” and “KEYWORD
UPPERCASE” checked.

 ABAP programs that update master and transactional data MUST ALWAYS
use SAP transaction codes (where transaction codes are available) by utilizing
standard SAP methods. This ensures that the appropriate logical units of
work, rollback, locking operations and edits are performed. SAP tables MUST
NEVER be updated directly.

 ABAP programs MUST NEVER be used to update configuration tables.

 SAP-delivered objects, including tables, ABAP programs, Dynpros, SAP
transactions, etc. can only be modified according to the Enhancement and
Modification Approach

 Whenever possible, code is to be written to be re-usable and can be stored in
a central library. Function modules are an example of this approach.

 Keep program lengths to a minimum. Each program should handle a discrete
problem.

 Keep the main line of any program limited to at most one page (20
statements) by using forms and parameter passing to reduce clutter.

 All programs must include proper error handling to avoid undesirable
terminations. This means that the system status (SY-SUBRC) must be
checked after every event in the program that changes it.

 Use the TRY/ENDTRY statement to trap runtime errors

 If there are more than two possible values for the SY-SUBRC field after a
performed event, all expected values should be tested explicitly and handled
in the program. This can improve the understanding of the error on exactly
what happened.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xv

 If there are a large number of data declarations necessary as part of a
program, consider separating data declarations into an INCLUDE. The
include name should be the same as the program name with the suffix ‘_TOP’

 Modularize the program for readability and maintainability.

 SAP provides a large number of function modules that perform various tasks
such as convert currencies, calculate dates, etc. In most cases, these
modules are efficient and can reduce coding time and effort; therefore they
should be employed where possible. It is worth taking the time to search the
function module library for a function that meets the requirements.

 No undocumented or obsolete features of the ABAP language should be used.

 Avoid using external PERFORM to standard SAP forms; this may negatively
impact functionality after upgrades from SAP.

 Refrain from using macros as they reduce readability and make debugging
more difficult.

2.2 Updating data in sap database

It is strictly forbidden to update the database (standard tables) directly using SQL

statements (INSERT, UPDATE, MODIFY, DELETE)

For standard tables, the following technologies must be used :

- BAPI
- Call Transaction
- Standard function
- IDoc

Some exceptions are allowed :

 The direct update of the “small” tables of ATAB type is authorised (E.g. :
TVARV table)

 The direct update of specific fields designed for that (see Append Structures)

2.3 Modification of standard programs

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xvi

No changes shall be made to SAP standard development objects. Modifying SAP

software can lead into errors, and will also create additional work during software

upgrades, as detailed by SAP:

• When a customer changes the source code of a standard program, these

changes can have unwanted results within other parts of the application. Once

a customer has begun ‘reconstructing’ a standard program, SAP can no longer

guarantee that this customer’s system will run without serious errors and may

have an adverse effect on the support agreement in place between SAP and

the customer;

• Customers of standard software packages often want to take advantage of

software upgrades or new releases. Customers who have modified the

software of their current release must save these modifications and reenter

them into the new software after each upgrade or release change. Depending

on the number and scope of modifications, this reentry process may make it

difficult or even impossible to take advantage of new software releases.

2.3.1 The alternative solutions

Enhancements provided by SAP : The enhancement concept offers a better

alternative to the modification approach. If the functionality of an SAP system is to be

extended, the "exits" available within the standard SAP applications shall be used.

Add-ons that are attached to exits have the following advantages, as detailed by

SAP:

• They do not affect standard SAP source code. When new functionality is

added to an R/3 system using SAP exits the code and screens created are

encapsulated as separate objects. These customer exits are linked to standard

applications, but they are distinct from the standard SAP software package.

• They do not affect software upgrades. When new functions are added using

SAP exits, the objects are customer objects, which adhere to strict naming

conventions. When the time comes to upgrade a software release, the special

names of customer objects ensure that, they will not be affected by, either

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xvii

changes or additions within the standard software package. As a result, you do

not need to save and then reenter add-ons attached to exits

You can find more details in the extended online help under BC – Enhancements to

the SAP Standard.

There are different types of enhancements, each of which is a hook on which add-

ons can be attached.

Copy of standard programs/objects : In case an enhancement cannot be used, rather
than modifying an object standard SAP R/3, we’ll prefer to duplicate only the mains
objects associated under specific names. These specific objects will then be adapted
to fulfil the requirements.

2.3.2 OSS Notes application

The application of any OSS note must be approved and will be performed by the

responsible person. Only OSS notes which have the status "released for customer",

should be applied.

The OSS notes will be applied and managed using the SAP tool "Notes Assistant".

This tool is used for:

• Download the related notes from SAP

• Check the validity of the notes

• Check if applying other prerequisite notes is required

• Assign notes to persons

• Apply the notes. If necessary, the notes will be applied manually, depending

on the implementation status

• Uninstall notes

• Manage the processing status

• Keep the history of the applied notes

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xviii

If a note has to be implemented manually:

• The code should be inserted exactly as it appears on the OSS note. At the

start of each block of inserted or amended code the following text (tag) should

appear:

*** Begin OSS Note <note number> ***

• At the end of each block of code inserted or amended the following text should

appear:

*** End OSS Note <note number> ***

For small block, each changed line shall be commented with the OSS note number

instead of using the begin/end tag.

Where applicable, the code should be commented-out rather than deleted.

When possible, OSS note implementation shall be described / logged (as any other

change) in the source code header.

2.4 Authorisations

As a rule, authorization checks should be used whenever appropriate to verify the
access level of the user executing the program. Users are authorized with
restrictions to manage or display data in SAP. Users authorization management in
SAP consists in assigning authorization roles to users.

These roles are composed of authorization objects that contain fields with specific

values depending on the user. (e.g. : role with an authorisation object X on the

company code).

The object to check in the instruction AUTHORITY-CHECK will be given by the

authorization team. You must contact them, explain them what is the goal of your

program and according to these informations, they will give you the correct

authorization object(s) to check in your program. If necessay, they will create a

specific object.

All executable programs must be linked to a transaction code. This will then be used

in an authorization object to determine who is allowed to call the program.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xix

Where appropriate, programs can also be allocated an authorization group in the

attributes. This authorization group can then be assigned to an authorization profile

and will ensure that only authorized users will be able to access the program.

It is mandatory to create a specific transaction and insert one or several

AUTHORITY-CHECK in the following programs types :

 Upload/download programs

 reports

 print programs

 screen painter transactions

 any other programs that a user will be able to execute manually

Forms (layouts) and enhancements may not apply to this rule.

A specific authorization group must be assigned to each table maintenance view.

Each time you assign an authorization group to a table maintenance view, you must

inform the authorization team of it in order that they take it into account in

authorizations management.

2.5 Languages & Translations

English is the working language, so, connect to SAP in English. This is applicable for

all SAP development objects and for technical documentation.

All the objects will be created and maintained in English, they will be translated to

other languages if necessary.

3. ABAP PROGRAMMING RULES

SAP Custom Developments in the EP are subject to the so called Programming

Standards. These will provide instructions and recommendations based on SAP

Development Best Practices and will further be extended with some rules to comply

with EP Development Standards. Overall, the goal is to support the use of common

data definitions, program structures and naming conventions, in order to achieve

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xx

easily maintainable development objects and minimize the risk in terms of

performance and security / authorizations.

3.1 General recommandations

3.1.1 Date / Time

The default system time zone is CET (Central European Time) and it should be used

in all cases, unless a different time zone is required or specified in a particular

Functional Specification. SY-DATUM & SY-UZEIT fields should be used as default

and SY-DATLO and SY-TIMLO can also be used when different time zone is

specified.

3.1.2 Date / Time Format

To avoid ambiguous date format, the date must be printed in DD MMM YY or DD

MMM YYYY format.

Example: 3 Sep 17 or 3 Sep 2017

When date/time are printed using a different time zone, to avoid ambiguous time

zone, the time zone must be printed.

Example: 3 Sep 17 16:32:45 (GMT)

3.1.3 Decimal Notation

Quantities and values must always be printed according to the user's defined

“decimal notation” settings, except if the Functional Specification requires a specific

format.

3.1.4 Re-usable aspects

 You should never used hard coded values or hard coded texts in programs.

 Literal values must be replaced by the ABAP text elements or standard texts

 Fixed values that will never be changed can be declared as constants in
program.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxi

 Fixed values that can be updated / completed and must be stored in TVARV
table. The table can be fetched using function module/class method (not yet
defined)

3.1.5 Selection-screens

The selection-screen of a program is automatically created by using Parameter or

Select-options statements.

The selection-screen must have a user-friendly layout :

- Using frames, skipping lines
- Group logical selection criteria by blocks
- Frames & Blocks must have titles
- Search helps must be available each time (if possible)

Use as much as possible standard fields labels. Every screen field should always

refer to a DDIC table or field.

Group parameters and select-options that are logically interrelated and put the most

important fields on top.

Users actions must be :

- predictable : same action leads to same result
- logical : action result is easily associated with the action itself
- reliable : program should safeguard the user from making mistakes

User-friendliness has many advantages :

 Users will quickly know what to expect or what to do with the program

 Users will need less support when trying to use program

 Because users can focus on the processing instead of the user interface, their
learning process will be faster

 Users will feel safer in an environment that they recognize and understand,
which will make them feel in control

 Errors due to wrong input, or the wrong use of buttons, will occur less
frequently

 User acceptance is increased

 User productivity is increased

 User satisfaction is increased

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxii

3.1.6 Data Update

Data base updates can be performed asynchronously or synchronously. An

asynchronous update is performed by a separate module, generally a function

module, and is processed in a separate processing task. Under this option the

program does not wait for updating to the database to be completed before

proceeding with the dialog processing of the next record. A synchronous update is

when the update is an integral part of the program and the next record is not

processed until the current record has been updated on the database.

For normal processing, such as transactions, asynchronous update is the

recommended method. Synchronous update may be used for mass table or master

data updates, such as batch input. In this case asynchronous updating would

adversely affect system update times for other users due to the volume involved.

The update logic for both asynchronous and synchronous updating must be separate

from the other program logic. This is done by the use of a FORM which is invoked

with the PERFORM <form_name> ON COMMIT statement. When this structure is

used the processing of the logic in the form is delayed until a COMMIT WORK

statement is executed later in the program. It is possible that the COMMIT WORK

statement may not be executed until after several additional screens.

• If synchronous mode is to be used the form could either contain the SQL

statements or invoke a function module CALL FUNCTION <function_name> to

perform the updates.

• If the asynchronous update mode is to be used the form contains the

statements to invoke a function module CALL FUNCTION <function_name> IN

UPDATE TASK to perform the updates. This causes the named function to be spun

off as a background task whilst the ABAP continues processing.

Never update system fields or pass system fields to Procedures.

Error messages sent in the update task will be written to the system log. All error

messages will end the program with an abort. The user will be sent a mail message

to inform them that the update has failed.

Generally standard SAP tables should only be updated by the methods provided by

SAP e.g. call transaction or BAPIs.

3.1.7 Record Locking

All records that are to be changed in some way in a transaction must be locked to

ensure no-one else tries to change them at the same time. This is done using a lock

object as defined in the data dictionary. The record should be locked at the very

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxiii

beginning of a transaction. If the update is synchronous, the table will have to be

unlocked after the COMMIT WORK statement. For asynchronous updates the table

will be unlocked automatically by the update task.

3.1.8 Using SAP Runtime Memory

Use persistent classes with a defined key to pass data between different

applications. Alternatively, when using "Import from" or "Export to" memory

instructions, always reference a unique ID and use the instruction FREE MEMORY

ID <id> or DELETE FROM MEMORY ID <id> after the import. You can also use

Shared Objects when dealing with large volumes of data.

3.1.9 Debugging breakpoints

All the debugging statements (breakpoints…) must be removed from the program

before its transport toward validation environment.

Use instruction ‘BREAK user_name’ to activate the break-point only for the current

user instead of instruction 'BREAK-POINT'.

3.1.10 Error handling

3.1.10.1 Purpose

The message handling process varies depending on the type of programming,

functional requirements, run time environment and modularization. ABAP errors

occur for the same reasons that errors occur in other programming languages (e.g.,

record not found, type mismatch, record locked, etc.)

The following sections detail the proper way to handle certain types of messages in

certain situations.

The list is not comprehensive and the programmer is responsible for using good

professional judgment for the cases that are not covered below.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxiv

No error checking can be done for errors found within the update task; however SAP

automatically caters for these and will abort all the changes made.

3.1.10.2 Messages

ABAP programs should use the MESSAGE statement to output messages to inform

when failure of runtime activity after any actions, like filling an internal table or

reading from a database table etc… field SY-SUBRC will be used to check for

success or failure of the preceding action.

For executable program, the message-id should be defined in the REPORT

statement

Custom messages should be created and maintained as a message class in

transaction SE91 by related applications (SD, FI, Interface, Report), or, specific to a

program if it does not fit into a general custom application specific message class.

The message text should be defined as a concise text describing the runtime

message. Substrings (&) should be used to identify the variable that is specific for the

message.

Example: REPORT z…. MESSAGE-ID z1.

….

IF sy-subrc EQ 0.

 MESSAGE S001 WITH mara-matnr. “Material & has been updated

ENDIF.

This message class should contain all messages used by add-on programs.

Messages within this class can be used with the format:

MESSAGE Ennn(ZCA)

E = Message Type (‘I’ = Information, ‘W’ = Warning, ‘S’ = Success, ‘E’ = Error,

‘A’ = Abort)

nnn = Message number within ZCOMMON

 The long text option in the message should be used to define the action.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxv

Depending on the gravity of the error, the program can continue or end.

3.1.10.2.1 Message type

 I Informational Press ENTER to continue

It contains information about operations already performed and can be safely ignored without

any consequences.

 W Warning Correction possible

It provides information about the consequences of certain actions.

These messages cannot be ignored but the user can choose whether or not to make a

correction or bypass the message.

 E Error Correction required

It contains information about processing errors.

The system interrupts the current processing so that the errors can be corrected. Only then

can processing continue.

 A Abend Transaction terminated

It provides information about processing errors but the processing cannot be resumed.

 X Exit Transaction terminated with short dump

It provides no processing information, but rather, a stack dump for the state of the system.

 S Success Message on next screen

It contains normal information which is show in screen.

The messages in ABAP are handled, in most cases, by the system field SY-SUBRC

which retains the value of the return code after specific operations such as select,

read, translate, etc.

Whenever it is possible for a statement to set a return code value, which must be

handled to insure proper continuation of the program, SY-SUBRC should be explicitly

checked and appropriate action taken.

 SY-SUBRC EQ 0 : indicates a successful completion of the statement

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxvi

 SY-SUBRC NE 0 : indicates an error condition for the statement

If no action needs to be taken when SY-SUBRC returns an error condition, a

comment must be included stating such and the SY-SUBRC check is not being done.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxvii

3.1.10.3 Error in Function Module or Class/Methods

Exception codes are used to communicate errors from a function module, and a

method to the calling program/class.

The calling program/class must handle all possible errors generated by a

function/method, by the use of the EXCEPTIONS clause of the CALL FUNCTION /

CALL METHOD statement in conjunction with SY-SUBRC.

For function module, the use of OTHERS is acceptable to handle errors that do not

have specific handling required. Letting error codes "fall through" is not

acceptable.

This makes it unnecessary to use of the MESSAGE ... RAISING EXCEPTION

construct, which should, therefore, be avoided.

When a function module/method has been called, the return code field (if one is

defined) will be checked for success or failure.

If the return code is incorrect, in most cases, a message should be displayed.

3.1.10.3.1 Raise exception

The RAISE EXCEPTION should be used to terminate the processing of the function

and return an error code to the calling program unless one or more of the EXPORT

parameters contains valid information that the caller will require.

If RAISE EXCEPTION is invoked in a function module the EXPORT parameters are

not filled when control is returned (immediately) to the calling program.

3.1.10.3.2 Catch System Exceptions

When possible runtime exceptions should be captured and processed as error using

the CATCH … ENDCATCH or TRY … CATCH …ENDTRY statements instead of

allowing a program to dump.

When a runtime exception is trapped a detailed message should be presented to the

user indicating the severity of the problem, the cause of the problem, any remedies

required to fix the problem, and how to reprocess the ended task

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxviii

- Use an Error Class in the CATCH STATEMENT whenever possible

- Only use a specific Error ID if the error situation can be very precisely

defined

Each Error ID or Error Class should be placed on separate lines of the CATCH

Statement

The CATCH … ENDCATCH return code check should be done immediately after the

ENDCATCH statement and proper message should be issued.

3.1.10.3.3 Class-Based Exceptions

The exceptions of all exception classes visible in a program can be triggered with

statement RAISE EXCEPTION.

Class-based exceptions can be declared in the interface of procedures.

For local procedures, you use the addition RAISING of the statements METHODS

and FORM for it.

In the Class and Function Builder, you select exception classes when defining

exceptions in the interface.

Statement CLEANUP introduces a statement block of a TRY control structure in

which you can carry out cleanup tasks.

3.1.10.4 Exception handling in Workflows

Exceptions are defined in the local events within the version dependent tab of the

workflow current version.

See example here:

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxix

This will generate an outer exception block in the handler:

Inside the inner block, the validated value of a workflow container element whether it

is valid or not by using Condition step. Like in this example if the value of the element

is zero then, it will raise the event "Counter_Zero_Exception" by using a Process

Control step, which can trigger and exception, as defined here above.

If the value of the element is not equal to zero then, It raise the "Not_Zero_Exception"

event by using another Process Control step and continue it’s process.

Example of “Counter_Zero_Exception” in workflow:

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxx

As opposed to the normal flow, when the value is not equal to zero :

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxxi

3.1.10.5 Exception handling in Proxies (Interfaces)

The error handling and monitoring for interfaces using ABAP proxies is the

SXI_MONITOR.

This tool provide an easy to use interface for end-users to correct the errors and a

generic framework for achieving this task.

In the ABAP proxy runtime, you’ll handle two types or errors:

 System errors that are triggered by the runtime. These might be errors during
transfer, due to a failed server, for example.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxxii

 Application errors that are triggered or handled by the application alone. An
example would be a request for data about a material that is unknown in the
receiver system.

Application error handling is essentially of interest in the synchronous case. In this

case, a receiver can inform a sender that an application error has occurred during

processing of a request message.

3.1.10.5.1 Handling System Errors

You catch errors that occur during the transmission of a message using the

exception class CX_AI_SYSTEM_FAULT.

You distinguish system errors using error codes; these are managed and

documented centrally for all systems.

The application can display an error message using the attributes CODE and

ERRORTEXT of the exception class.

3.1.10.5.2 Handling Application Errors

Fault messages are provided in WSDL for handling application errors.

The proxy generation functions use these to generate the exception classes (prefix

CX_).

Exception classes for application errors are derived from the basis exception class

CX_AI_APPLICATION_FAULT.

You can use this exception class to determine an error situation - independently of

the exact error - or in a CATCH branch, you can use it to catch all the application

errors that have not yet been handled.

3.1.10.5.3 Fault Message Types in PO

You can create fault message types explicitly for service interfaces in the Enterprise

Services Repository.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxxiii

Using fault messages, you can handle errors triggered by the called application or

retain them in the database for monitoring purposes:

 Synchronous Communication (Inbound/Outbound/Abstract)

Triggering an error at the receiver that is providing a service; handling the

error at the sender that called the service.

 Asynchronous Inbound Interface

Fault messages are not used here to handle an error at the sender.

The fault message generated by the triggered error is retained in the database

for monitoring instead.

This could be the flow representation of an inbound message:

3.1.11 Modularity aspects

A modularization unit (method, form routine and function module) can be used:

 To structure the program

 To group a logical block of statements
 To repeat the same logical block of statements

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxxiv

Such a subdivision makes both a program's details more recognizable and the

different parts of the program more reusable.

3.1.12 Pretty Printer

To improve code readability, the developer's user settings must specify the following

"Pretty Printer" settings:

3.1.13 Obsolete

An obsolete “object” (program, function module, class, method, transaction code …

every executable object) cannot be deleted. Instead, it must be mark as “Obsolete”.

To mark an “object” as “Obsolete”:

• Set the package to ZOBSOLETE.

• Rename the object by adding “_Obsolete” to the end of the object name using

the available characters.

• For transaction code, do not change the program name. Leave the original

one. The purpose is to make the obsolete transaction not working anymore.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxxv

3.1.14 Documentation

In many cases software documentation is as important as the development itself. If
no documentation exists or if it is not comprehensive enough, this can lead to
increased efforts once additional development is required or if there is a change in
developers. All the comments should be done in English

Within an SAP system landscape the SAP Solution Manager provides options for
project documentation.

 Offline documentation: every development must have an approved technical
specification linked (stored in Solution Manager). In regards to the Technical
Specification document, its main purpose is to allow developers and non-
developers to understand the ins and outs of a program/function, to know how
it works in detail. All objects that have been created or changed must be listed
in this Technical Specification, along with some test scenarios which should
enable to quickly demo the related functionality.

 Online documentation: Some development objects like methods, function
modules and reports can contain documentation directly within the source
code documentation (see transaction SE38, radiobutton "documentation")

 Inline : every development must have some explanations in ABAP code.
Processing blocks should briefly be documented in the source code to make

it easier for people not familiar with the program to quickly understand the
main points of the code.

Source Code documentation includes a header block (see Appendix A), which must

be included in each object that is created or changed (where possible).

3.1.15 Performance

3.1.15.1 Performance guidelines rules

The classical performance guidelines for using Open SQL and for ABAP

programming essentially remain vaild for Sap HANA. These guidelines can be

phrased a “5 Golden Rules”:

Icon Rule Details / Examples

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxxvi

Icon Rule Details / Examples

Keep the result sets

small

 Do not retrieve rows from the database and

discard them on the application server using

CHECK or EXIT, e.g. in SELECT loops

 Make the WHERE clause as specific as possible

Minimize amount

of transferred data

 Use SELECT with a field list instead of

SELECT * in order to transfer just the columns

you really need

 Use aggregate functions (COUNT, MIN, MAX,

SUM, AVG) instead of transferring all the rows

to the application server

 Minimize the

number of data

transfers

 Use JOINs and / or sub-queries instead of nested

SELECT loops

 Use SELECT … FOR ALL ENTRIES instead of

lots of SELECTs or SELECT SINGLEs

 Use array variants of INSERT, UPDATE,

MODIFY, and DELETE

Minimize the

search overhead
 Define and use appropriate secondary indexes

Keep load away

from the database

 Avoid reading data redundantly

 Use table buffering (if possible) and do not

bypass it

 Sort Data in Your ABAP Programs

The following recommendations are derived from measurements and experiences
based on SAP Business Suite using SAP NetWeaver AS ABAP 7.4 running on SAP
HANA SPS5.

Guideline Additions in the context of SAP HANA

As on all database systems, there is a performance overhead
associated with every database access for connection handling, SQL
parsing, execution plan determination, etc.

The following existing guidelines should be prioritized higher on
SAP HANA:

 For modifying operations (INSERT, UPDATE, DELETE) using
array operations should be preferred to single operations when

https://blogs.sap.com/wp-content/uploads/2013/03/1_186738.png
https://blogs.sap.com/wp-content/uploads/2013/03/2_186721.png
https://blogs.sap.com/wp-content/uploads/2013/03/3_186734.png
https://blogs.sap.com/wp-content/uploads/2013/03/4_186735.png
https://blogs.sap.com/wp-content/uploads/2013/03/5_186733.png
https://blogs.sap.com/wp-content/uploads/2013/03/3_186734.png

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxxvii

Guideline Additions in the context of SAP HANA

changing many data records

 Nested SELECT loops should be avoided or replaced if
possible by

o Changing the nested single SELECT statement to an
appropriate SQL construct (e.g. FOR ALL ENTRIES,
JOIN, sub-query, etc.)

o Avoiding repeated access to the same data via SQL

o Using the ABAP table buffer (see existing guidelines for
the ABAP table buffer)

In most cases, SAP HANA does not require secondary indices
for good search performance.

To reduce main memory consumption, and to improve insert
performance all existing non-unique secondary database indices on
columnar tables are removed or do not get created during installation
for all AS ABAP systems from SAP NetWeaver 7.4 onwards.

For some use cases secondary indexes can still be beneficial. This is
especially true for highly selective queries on non-primary key fields.
These queries can be significantly improved by indexes on single
fields which are most selective. SAP Note 1794297 describes the
procedure to find and create these indexes.

The guideline is renamed to “Keep load away from the database,
but push data-intensive calculations to the database where
applicable”

On SAP HANA, it is beneficial to move data-intensive calculations into
the database. Nevertheless, it is not recommended to execute the
same operations redundantly, e.g. in different user contexts or
different dialog steps of the same user. Meaningful buffering of results
on the application server should be applied.

The following recommendation should be considered in this light on
SAP HANA

Sorting data:In general, the recommendations for sorting remain as
before, i.e. if the database does not use the same index for sorting as
for selection, then it may be in some situations more efficient to sort
in the application server in particular if all data to be sorted has to be
fetched from the application server anyway. However, if the sorting is
part of determining the result set (e.g. select top n customers by
revenue) or the sorting is part of a larger calculation logic (e.g. within

https://blogs.sap.com/wp-content/uploads/2013/03/4_186735.png
https://blogs.sap.com/wp-content/uploads/2013/03/5_186736.png

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxxviii

Guideline Additions in the context of SAP HANA

a procedure), it should be done in SAP HANA.

Performance optimizations the ABAP platform provides runtime tools for tracing

and monitoring the performance of the business processes.

Performance optimization procedure:

 Static code check tools such as Code Inspector and ABAP Test Cockpit to find
pieces of code using known critical constructs,e.g. deviations from the
classical performance recommendations.

 Tools analysing performance at run-time, to determine if critical constructs
really cause issues at run-time, for example the ABAP Trace (SAT) or the
ABAP Profiling perspective in the ABAP Development Tools for Eclipse.

 A new tool called SQL Monitor to determine the priority if different programs
access the database intensively.

 A new tool called SQL Performance Tuning Worklist combining the results of
static and run-time analyses to create a prioritized worklist.

 Another tool for runtime performance analysis is the SQL Trace (ST05). This
tool in particular analyses database accesses. It can thus be used for a deeper
analysis once ananalysis with the ABAP Trace or the ABAP Profiling
perspective indicates that database access could be the cause of performance
issues

3.1.15.2 Core Data Services

In order to increase performance and code optimization in ABAP for Hana you can

take take advantage of the advanced view definition techniques using Core Data

Services (CDS).

Using CDS provides several advantages:

 More data-intensive calculations can be pushed down to the database (Code-
to-Data paradigm) through extended view functionality

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xxxix

 Reading data – Via nested views, where one view consumes another view,
are supported

3.2 ABAP Programming techniques

3.2.1 General

This section describes the rules involving the use of ABAP features and components.

The complexity of a development is dependent upon what it aims to achieve; a small

report from an existing table is recognized as being entirely different from a complex

development requiring transactions, screens, and tables etc. The development team

shall determine the appropriate level of control depending on the risks and potential

impact of the development.

These standards do not specifically detail those areas concerning the proper design

of menus, screens and reports, nor the “aesthetic” or “ease-of-use” aspects of

application design. Neither, does it cover the use of standard SAP functions (E.g.

Back, Cancel, Help, etc.). Information on all these subjects is contained in the BC -

SAP Style Guide from the standard online documentation. This SAP document and

other related SAP documents are endorsed and form part of these standards and

should be followed as such.

Several factors determine the technical design of an ABAP application. Certain

elements are given by the tasks the user must perform, other elements by the

development environment. The following standards define how a development

should be coded or structured.

While the ABAP workbench (SE80) is still fully supported, the ABAP Development
Tools for SAP NetWeaver (SAP HANA Studio) are highly recommended on SAP
HANA.

3.2.2 Dialog Modules

Dialogue modules must have the same documentation blocks as the main programs

(see Appendix A). The name should describe the purpose of the dialog module. The

documentation must state clearly the screens, statuses, chaining, operation modes,

menus, and general flow structures used.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xl

3.2.3 Function Modules

Rather than replicating the same code in numerous places (especially when the

common code is suitable for the passing of parameters into and out of a function), a

function module should be created. Its name should describe the purpose of the

function module. Function modules shall have the same documentation blocks as the

main programs (see Appendix A).

The documentation block must be maintained in each function module as it can be

regarded as an independent piece of code.

The documentation shall state clearly the type and sizes of parameters passed to

and from the function and indicate whether they are changed. One of the parameters

shall be a ‘return code’ that shall be checked in the calling program to detect success

or failure of the processing within the function module.

If you make a call to SAP standard code from within a custom function module being

developed and it supports a ‘return code’, this ‘return code’ shall be checked and a

decision made as to whether or not to carry on processing within the developed

function module.

3.2.4 Include Modules

It's NOT recommended to use Include Modules, except when developing large

transactions or working with Module Pools. Preferable solution is to use Subroutines,

Function Modules and Classes to further modularize the code. Each Include Module

must have the documentation blocks as defined in Appendix A (this does not apply to

modules automatically generated by SAP).

3.2.5 Module Pool

Module pools must have the same documentation blocks as the main programs (see

Appendix A). For larger transactions, the include modules should be divided up into

those containing data, output modules, input modules and subroutines, in this order.

3.2.6 Screen Flow Logic

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xli

It's recommended that no executable code is included in a screen flow, only

LOOP/ENDLOOP, MODULE, CHAIN/ENDCHAIN and PROCESS. Other statements

should be invoked by a MODULE call.

3.2.7 Messages

When possible, variables should be used in messages. For instance it is not enough

just to send a message that a document has been updated. The user should be

informed about which document has been updated. It is recommended that

messages are placed in the PAI logic and not in PBO logic. Long text can be

maintained for long messages or in cases where it's required to enhance the user’s

understanding of the message.

Messages and long text shall be maintained in all the required native languages

defined by the EP for the SAP FMS.

New messages shall be created in the message class related to the concerned

application Area Code.

3.2.8 Data Definition

Overall, program data shall be defined in accordance with Appendix B.

3.2.9 Reports

3.2.9.1 ALV reports

Sap List Viewer with Integrated Data Access (SALV IDA) enables to display attractive and

interactive lists. This new ALV works more on code push-down concept. Means, you don’t

select the data and send that to the ALV, instead you generate the ALV for the DB table, DB

view or a CDS views.

The IDA framework then analyze the required columns, analyze the filters to get the
required where condition and execute the select query. Additionally it also analyze
the view port — the only visible section of the ALV — the visible rows and columns.
Using this info, the framework would trigger a new query on the DB to get only those
required data.

Here are the main steps to build an ALV report:

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xlii

 Selection screen

 Identify fields to be edited into the body : label (HEADER) and data (ITEM),

 Manage the events: for example a top-of-page in order to integrate a specific
header ,

 Call the ALV: a container instance is created first, then the factory method
CREATE of CL_SALV_GUI_TABLE_IDA is called to generate the instance of
the new ALV optimized for HANA. Notice that rather than passing an internal
table containing the data to be displayed, only the name of the database table
(or externalview/CDS view) needs to be supplied via the parameter
IV_TABLE_NAME.

3.2.10 Forms

In SAP S/4HANA the target architecture is based on Adobe Document Server and
Adobe Forms only. For the form determination rules (along with other output
parameters) BRF+ functionality is used (in this sense in combination with the

message determination).

The SAP S/4HANA Output Management supports the following

 Print Channel:
o Email
o Printout
o XML

 Print Technology:
o Adobe Forms using Fragments
o Adobe Forms
o SmartForms

Regarding the forms especially footer and Logos for the new output management:

 The standard SAPScript Repository is used (Transactions: SO10 and

SE78). A customer can maintain texts and logos centrally. The
determination rules can be accessed via Customizing.

Before choosing any tool, the output requirements must be fully known :

 Landscape / Portrait

 Logo insertion

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xliii

 Barcode Printing

 Use of Pre-Printed paper

 Vertical Printing, Grid Printing, Text Alignment,

 Mult-tray inbound/outbound,

 Fax, e-mail, pdf…..

3.2.11 S/4 HANA Extensibility

Extensibility covers a broad spectrum of topics that allows us to adapt standard
business software according to the business needs. It ranges from business
configuration; layout adaptation of user interface (UI), forms, and reports; custom
fields and logic; integration; and custom terminology and translation to customer-
specific applications.

Extensibility in the SAP S/4HANA can be categorized into two main parts: side-by-
side extensibility through SAP HANA Cloud Platform which is not our case, and in-
app extensibility through built-in capabilities.

For S/4 HANA on-premise, in-app extensions are implemented in the same system
(or software stack) as the enhanced application. There are two options:

 Key user extensibility - using use-case specific tools, that can be launch
directly from UI, small changes, adaptations of the application logic can be
implemented. All extensibility scenarios depend on the availability of related
“anchor points” in the to-be-extended SAP application.

 Classic extensibility - we can extend and modify SAP S/4 HANA software with
full access to development tools such as Eclipse or ABAP Workbench (se80).
This extensibility capability is seen as a continuation of the SAP ECC
enhancements technics.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xliv

3.2.11.1 Key User Extensibility

The UI users (or IT staff, depending on the setup) can change to ‘personalization
mode’ to perform several tasks: hiding and renaming fields and adding new custom
fields from a field repository, moving fields and UI blocks and defining new filter and
table variants (I1 in the picture below). New custom fields can be added to the field
repository from the personalization mode as well. In addition new custom fields can
be added into reports, forms and email templates (I3).

The second step is the extension of the business logic to process the new custom
field (I2). The frontend (UI5) app communicates with the application using an OData
service which can be extended to process the new custom field. This is available in
the same context using a restricted set of ABAP statements (limited to published
views and APIs). These tools can also be used to add the new custom field to CDS
views for reporting (I3) and generally extend business logic in the same way BAdIs
allow today (I4).

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xlv

All of these extensions are performed as separate objects with reference to the
underlying base object. This approach follows well-established principles in object-
oriented programming (inheritance) and ensures a modification-free system.

3.2.11.1.1 User Interface Extensibility (I1 in the picture above)

In the adaptation mode (also called runtime authoring), the business user can adapt
the

UI layout in a modification-free way:

 Hide fields in a form, table, or filter

 Rename labels

 Move form field or UI block

 Define new filter and table variants

This applies to transactional SAP Fiori UIs and to SAP Fiori fact sheets.

Beside these changes, more fields can be added to the UI layout. They can either be
SAP fields that are not yet part of the UI or custom-specific fields (see next section).

3.2.11.1.2 Field Extensibility (I2 in the picture above)

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xlvi

Field extensibility refers to the capability to add customer-specific fields (custom
fields) to a

business context of an application in a one-to-one relation.

Directly from the UI adaptation mode, a business user in SAP S/4HANA may launch
the “add field” functionality. This guides the user into a simple dialog, where the field
properties can be edited or translated – like data type, label or code list values, and
texts.

After the field has been defined, all necessary software artifacts are generated by the
extensibility tool: SAP database tables and application structures are enhanced by
using the “DDIC extension include” concept. Assigned SAP core data service (CDS)
views, SAP Fiori search, and OData services are extended as well. As the
applications are prepared for this kind of extensibility, they do consider these
extension fields in their business logic, so the generated fields can be used directly.

It is also possible to find other artifacts that are related to the underlying extended
business context (such as more UIs, reports, forms, external interfaces, processes,
and enterprise search) and to add the previously defined custom field to these
artifacts.

When several applications are part of the same business process, they can be
extended together.

3.2.11.1.3 Table Extensibility (I2 in the picture above)

Table (or node) extensibility denotes the capability of adding customer-specific fields
to a business context of an application in a 1:1 or 1:n relation.

In contrast to field extensibility, new customer specific tables are created in the
database. This is accompanied by a set of API functionalities supporting create, read,
update, delete (CRUD) services through API classes, CDS views, and OData
services.

 Applications prepared for table extensibility integrate the customer-specific table
through these APIs in all relevant layers.

Two types of enhancements are possible.

 New (stand-alone) custom tables that are not child tables of SAP tables
could be fed through a UI or data load from other customer systems.

 Custom tables could be used to add fields to SAP business contexts in a
1:n relation or to resolve the technical constraints of field extensibility in
case of extensions in a 1:1 relation.

3.2.11.1.4 Business Logic Extensibility (I4 in the picture above)

It is an enhancement of the behavior of applications and processes.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xlvii

Prominent use cases for this capability include data validation, data calculation (for
example, supplying default values), and mapping of standard and extension fields
within applications and processes. To make processes more flexible, custom-specific
checks might be offered (for example, on approval) or the possibility of removing
process steps or defining additional ones. Additional examples of use cases are
application

domain–specific topics such as tax calculation or price determination.

Technically, business logic extensibility in SAP S/4HANA is realized by application-
specific code exits, which can be implemented.

 Code-Based Implementations - As code exit technology (for example,

Business Add-Ins, or BAdIs) is the standard enhancement option for ABAP,
and since major parts of the SAP S/4HANA core applications are implemented
in ABAP.

 Business-Rule-Based Implementations - Also for business logic extensibility,
the business user should be able to realize as many use cases as possible.
Technically, the business rules framework BRF+ will be used to realize this
capability.

3.2.11.1.5 Report Extensibility (I3 in the picture above)

Analytics is embedded in the same technical stack as the application and into the
business processes and can be enhanced directly from the application UI. For that,
specific SAP Fiori apps will guide the user hrough the entire process.

Also, new analytics content can be created. The following capabilities are supported.

 Extensibility for Data Sources - Data sources will be implemented using open
CDS views, turning raw data into reportable data by selecting only those fields
from the underlying database tables that are needed. In addition, using filters
and calculations, generally needed transformations of the data can be
modeled, facilitating the later use of the data. Business users at the customer
will be able to create new data sources based on standard data sources by
using them in joins, unions, and projections and creating additional restricted
(filtered) key figures, calculated measures, and dimensions within existing data
sources. Also, it is possible to change existing data sources by adding or
removing fields, calculations, or filters.

3.2.11.1.6 Forms and E-Mail Extensibility (I3 in the picture above)

Print forms will be maintained through the Adobe LiveCycle Designer. They will be
based on OData services, which might be extended in case of field or table

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xlviii

extensions according to the user’s choice. Checkmarking a print form assigned to an
extended business context in the key user extensibility tool will make the extension
field available in the field catalog of the corresponding form. A forward navigation to
the corresponding editor will open the administration screen for form templates,
which in turn will allow the Adobe LiveCycle Designer to be launched.

In addition, a key user will be able to create new print forms that may be:

 Based on an existing data source (OData service)

 Based on an extended OData service, using existing fields and associations
from published CDS views

 Based on a new data source (OData service)

The same applies for e-mail template extensibility, only these templates are not
bound against OData services but against CDS views.

3.2.11.2 Classic Extensibility

Enhancements are from several types :

 DDIC enhancements : Append structures

 User Exits

 Customer Exits (e.g. : function exits, screen exits, menu exits),

 Business Add-ins (Badi)

 Business Data Toolset (BDT)

 Business Transaction Events (BTE)

 Implicit and Explicit Enhancement

3.2.11.2.1 Append structures

Concerning the standard tables and structures of the data dictionary, additional fields

might be created at the end of the fields list using the ‘append structure’ function in

SE11.

BEWARE : name of new field must begin by ‘ZZ’!!!

3.2.11.2.2 Search-help exits

Standard Search Help Exits can be customized via the DDIC : transaction SE11.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page xlix

3.2.11.2.3 User-exits

User-exits are provided in standard SAP programs.

The best way to find them is :

- by transaction SMOD or CMOD
- either by transaction SE37, name ‘EXIT****’’ + a description

When a user-exit has to be implemented in SAP system, in order to have future

easier maintenance, please respect the following steps :

1) Create a specific include per functionnality (don’t forget, a user-exit can execute
many functionalities, so 1 functionality = 1 include)

2) Insert this specific include in the standard User exit program

SAP Golden rule

 Don’t use the instruction ‘CHECK’ inside a User-exit. This can cause a Dump.

 NEVER use the instructions COMMIT and ROLLBACK

3.2.11.2.4 Customer exits

Customer Exits (and also menu exits, screen exits…) are embedded in

Enhancements.

These enhancements are SAP objects which may contain one or several Exits.

Enhancements are managed in transaction SMOD : Abap Workbench Utilities

Enhancements Definition

The different kinds of ‘Customer Exits’ are the following ones :

 Menu exits : they enable to add specific menus into the SAP standard menus.
Those specific menus can refer to existing or specific transaction,

 Screen exits : enable to add specific screen and fields into a standard
dynpros,

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page l

 Function exits : enable to add Abap instructions during the process of a
standard transaction.

 Keyword exits : enable to add specific texts to standard Data Elements
(change title, description…)

3.2.11.2.5 Business add-ins (Badi)

 BADI's is a SAP enhancement technique based on ABAP Objects

 They can be implemented multiple times

 It does not require SAP Software Change Registration

 No effect on release upgraded on the functioning of BADI's

3.2.11.2.6 Enhancements

There are 2 approaches to enhance business or application logic :

 Implicit Enhancements

 Explicit Enhancements

Both approaches can be thought as "hooks" (technically, termed as "enhancement

option"), in which you need a container (technically called "enhancement

implementation") to contain your custom code. It is a name you have to give (like any

development object) and assign to a package. Enhancement implementation that you

have created lived in customer namespace, hence, it survives upgrade.

Implicit Enhancements

As the name implies, the pre-defined hooks are "given" and no additional effort is

required from developers to define it. Implicit enhancements can be found, typically

at the beginning and ending of the modularization unit. Within the development

environment, there is an avenue to show the exact position(s) of the "hooks". After

deciding where to place your code, you will create the "enhancement

implementation" to contain your custom declaration or code.

With function modules, you can add additional (optional) parameters. With global

class, you can add additional attributes and methods, and within existing standard

methods, you can extend further by :

adding additional parameters

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page li

introducing pre-exit (called prior to calling the method), over-write exit (replaces the

method) and post-exit (called after the method)

Explicit Enhancements

As the name implies, the "hooks" has to be pre-defined by SAP Developer. Unlike

implicit enhancement where the placement is predictable, explicit enhancement can

be placed anywhere in any modularization unit, as determined by the SAP

Developer.

There are 2 different types :

 Enhancement Point : Where you can place additional declaration or code

 Enhancement Section : Allows you to replace SAP's section of code

3.2.11.3 Enhancement activation table

There is no obligation to use general activation table for each enhancement however

it might be necessary to use it for specific cases. It is strongly recommended to be

used in common envirement, example in BTE.

Constants table should be used for that purpose which can be managed by

transaction ZBC_ENH_ACTIVE.

Example code activation look as follow:

IF NEW zcl_bc_enh()-

>is_active(iv_enh_main = 'ENH_NAME' iv_enh_submain = 'ENH_SUBNAME'

) IS NOT INITIAL.

 "Enh. code InSide

ENDIF.

3.2.12 Managing Custom Code

 Every modification to and enhancement of SAP standard means additional
effort during future upgrades and patches

 Transactions SPAU, SPDD, and especially SPAU_ENH are the key in
identifying potential adjustments

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page lii

 Enhancements may have to be adapted when original coding or the
enhancement definition is changed by SAP

 Some adjustments are done automatically, while others require manual
intervention

Custom Code tools:

3.2.12.1 Custom Code Lifecycle Management

The Custom Code Lifecycle Management (CCLM) application in SAP Solution
Manager is the central location where customers can manage their collection of
custom code all the way from creation to clearing of unused custom code objects
across the entire SAP landscape.

This application is the central point of access for all functions that you use to manage
the lifecycle of custom developments . The custom developments that you manage
with this application are programs, transactions, and other objects. The application
provides an overview of all the custom developments in your systems. You can
identify changes and manage your developments more effectively. Once identified,
the custom code objects in the landscape can be managed more effectively because
you can document ownership,

version, data quality, and usage patterns. Unused custom code can then begin to be

identified and removed. Where possible, used custom code can then be analyzed

and be reset back to standard SAP functionality. You can also perform upgrade tests
more efficiently by identifying the custom objects that are currently in use.

3.2.12.2 Usage and Procedure Logging (UPL)

UPL is a Kernel based logging technology with no measurable performance impact
and available in any ABAP based system based on the core functionality of SAP
Coverage Analyser. It is used to log all called and executed ABAP units like
programs, function modules down to classes, methods and subroutines.

3.2.12.3 SAP Code Inspector

The Code Inspector is a generic tool that you use to check SAP repository objects.
You use it to define inspections which examine object sets with the help of check
variants. It checks the performance, security, syntax, and adherence to naming
conventions of individual or sets of repository objects. You also use it to retrieve
statistical information or to search for certain ABAP tokens. As a result of an
inspection, you receive information, warning, and error messages about the different
properties of

the examined objects.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page liii

3.2.12.4 ABAP Test Cockpit (ATC)

The ABAP Test Cockpit is a new ABAP check toolset which allows you to run static

checks and ABAP Unit tests for your ABAP programs. ABAP Test Cockpit (ATC) is

directly integrated in the ABAP Develoment Tools for Eclipse and ABAP workbench

and has superior usability.

Based on the ABAP Test Cockpit (ATC) you can check and verify the quality of
ABAP programs.

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page liv

4. APPENDIX

4.1 Appendix A - Code Documentation

Header block:

**

* Initial Ref. ID (RICEFW ID): *

* Date: *

* Developer: *

* Change Request: *

* Description: *

* *

**

* Change Ref. ID: *

* Date: *

* Developer: *

* Change Request: *

* Description: *

* *

**

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page lv

4.2 Appendix B - Program Data Naming Conventions

PROGRAM DATA NAMING CONVENTIONS

Data Type Naming Convention

Field Symbol

<LS_<FreeText>> - local structures

<LT_<FreeText>> - local tables

<LV_<FreeText>> - local variables

<GS_<FreeText>> - global structures

<GT_<FreeText>> - global tables

<FS_Free_Text>> - is also allowed

Function Module ‘Changing Parameters’

CT_<FreeText> - table

CS_<FreeText> - structure

CV_<FreeText> - value

CR_<FreeText> - object

Function Module ‘Export Parameters’

ET_<FreeText> - table

ES_<FreeText> - structure

EV_<FreeText> - value

ER_<FreeText> - object

Function Module ‘Import Parameters’

IT_<FreeText> - table

IS_<FreeText> - structure

IV_<FreeText> - value

IR_<FreeText> - object

Function Module Exceptions

<FreeText>

ACTION_NOT_SUPPORTED

CANCELLED

EXISTING

FAILED

FOREIGN_LOCK

INCONSISTENT

INVALID

NOT_AUTHORIZED

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page lvi

NOT_CUSTOMIZED

NOT_FOUND

NOT_QUALIFIED

NUMBER_ERROR

SYSTEM_ERROR

Class Method ‘Changing Parameters’

CT_<FreeText> - table

CS_<FreeText> - structure

CV_<FreeText> - value

CR_<FreeText> - object

Class Method ‘Export Parameters’

ET_<FreeText> - table

ES_<FreeText> - structure

EV_<FreeText> - value

ER_<FreeText> - object

Class Method ‘Import Parameters’

IT_<FreeText> - table

IS_<FreeText> - structure

IV_<FreeText> - value

IR_<FreeText> - object

Class Method ‘Returning Parameters’

RT_<FreeText> - table

RS_<FreeText> - structure

RV_<FreeText> - value

RR_<FreeText> - object

Program ‘Constants’
LC_<FreeText> (local)

GC_<FreeText> (global)

Program ‘Object’
LR_<FreeText> (local)

GR_<FreeText> (global)

Program ‘Ranges’
LT_RNG_<FreeText> (local)

GT_RNG_<FreeText> (global)

Program ‘Form / Routine Parameters‘ P_<FreeText>

Program ‘Selection-Screen: Parameters’ SP_<FreeText>

Program ‘Selection-Screen: Select Options’ SO_<FreeText>

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page lvii

Program ‘Structures’
LS_<FreeText> (local)

GS_<FreeText> (global)

Program ‘Tables’
LT_<FreeText> (local)

GT_<FreeText> (global)

Program ‘Types’
LTY_<FreeText> (local)

GTY_<FreeText> (global)

Program ‘Variable’
LV_<FreeText> (local)

GV_<FreeText> (global)

Objects shall be named in accordance with the table below. Note that the information

presented here deals with the most commonly used development objects.

OBJECT NAMING CONVENTIONS

Object Type Naming Convention

ABAP Authorization Group Z<AreaCode(2)><FreeText(5)>

ABAP Class ZCL_<AreaCode(2)>_<FreeText(23)>

ABAP Class Interface ZIF_<AreaCode(2)>_<FreeText(23)>

ABAP Include Program ZI_<AreaCode(2)>_<FreeText(34)>

ABAP Program Z<AreaCode(2)>_<FreeText(36)>

ABAP Program Copy from

Standard Z<NameOfSapOriginal><SeqNumber(2)>

Authorization Class Z<AreaCode(2)><SeqNumber(1)>

Authorization Object Z<AreaCode(2)><FreeText(7)>

Background Job Z<CompCode(4)>_<AreaCode>_<FreeText(23)>

Batch Input Session Z<CompCode(4)><FreeText(7)>

Data Domain ZDO_<FreeText(26)>

Data Element ZDE_<FreeText(26)>

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page lviii

Data Structure ZST_<FreeText(26)>

Data Table Z<AreaCode(2)>_<FreeText(26)>

Data Table Authorization

Group Z<AreaCode(2)><FreeText(11)>

Data Table Type ZTT_<FreeText(26)>

Data View ZV_<FreeText(27)>

Dialogue Module Z_<ScreenNumber(4)>_<FreeText(23)>

Function Group ZFG_<AreaCode(2)>_<FreeText(19)>

Function Module Z_<AreaCode(2)>_<FreeText(25)>

IDOC Basic Type ZIDOC_<FreeText(21)>_<SeqNumber(2)>

IDOC Extension Type ZIDOCX_<FreeText(20)>_<SeqNumber(2)>

IDOC Function Module

Inbound Z_IDOC_INPUT_<FreeText(17)>

IDOC Function Module

Outbound Z_IDOC_OUTPUT_<FreeText(16)>

IDOC Logical Message ZIDOC_MSG_<FreeText(20)>

IDOC Segment Type Z1<FreeText(25)>

Lock Object Z<RefToTable or FreeText(15)>

Message Class Z<FreeText(19)>

Number Range Z<AreaCode(2)><FreeText(7)>

Package (Dev.Class) Z<AreaCode(2)>_<SeqNumber(2)>

Prototype ZPTYP_<FreeText(34)>

Screen Number 9000 to 9999

Search Help ZSH_<FreeText(26)>

Standard Text Z_<AreaCode(2)>_<FreeText(26)>

Test ZTEST_<FreeText(34)>

Transaction Code Z<FreeText(19)>

User-Exits (CMOD/SMOD) Z<AreaCode(2)><FreeText(5)>

Variant Name Z<FreeText(13)>

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page lix

FMS19 FMS environment and Development Guidelines and Standards

Part F to Technical Specifications

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page lx

ANNEX 2 - SAP PROCESS ORCHESTRATION, AIF AND BRF+ GUIDELINES

.

Error! Reference source not found.

Contents

1 SAP PROCESS ORCHESTRATION ... 1

2 ENTERPRISE SERVICES .. 2

2.1 GUIDELINES WHEN TO USE ENTERPRISE SERVICES ... 2

2.2 ENTERPRISE SERVICES DESIGN GUIDELINES .. 2

3 SAP PI NAMING CONVENTIONS... 5

3.1 NAMING RULE NOTATION ... 5

3.2 SOFTWARE CATALOG ... 5

3.3 SLD OBJECTS ... 10

3.4 ENTERPRISE SERVICE REPOSITORY OBJECTS ... 13

3.5 ERROR HANDLING ... 21

3.6 INTEGRATION DIRECTORY OBJECTS .. 23

4 APPLICATION INTEGRATION FRAMEWORK ... 26

4.1 INTRODUCTION .. 26

4.2 USAGE .. 28

5 BUSINESS RULE FRAMEWORK PLUS (BRF+). .. 29

6 INTEGRATION OF AIF WITH BRF+. ... 31

6.1 RULES FOR USAGE. .. 31

6.2 AIF SPECIFICS WITH BRF+ .. 32

Error! Reference source not found.

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 1 of 34

1. SAP PROCESS ORCHESTRATION

The SAP S4 Hana application makes use of SAP Process Integration (PO) to exchange data

to other applications (A2A), external Businesses (B2B) or user interfaces (A2X).

SAP PO is especially used for processing xml-based messages, but through its wide set of

adapters, PO can communicate several protocols and message formats.

In general, when a message can be converted and represented in xml, you can use SAP PO.

For asynchronous B2B and A2A interfacing with the SAP S4 Hana the use of SAP PO is

mandatory. Synchronous web services can be called directly from the backend.

1.1 ROLES

Within the Business SAP PO can have several roles:

 SAP adapter, SAP PO is connected to the Business Enterprise Service Bus to
exchange xml messages with other applications within the Business. SAP PO
transforms the Business global data model messages into a SAP Enterprise Services
based on SAP Global data types, Remote Function Calls (RFC) or Idocs, which are
used in the SAP backend.

 Message broker, SAP PO is connected to external or internal applications like Ariba
and external Businesses to exchange messages.

 Design repository, Design environment for Process Models, Orchestrations,
Enterprise Services and global data types.

1.2 Capabilities

SAP PO has several capabilities:

 Routing, PO routes the messages from a sender to one or more receiver based on
fixed settings or based on the content of the message.

 Message transformation, there are several possibilities to transform messages from
one type to other message types; techniques like Java message mapping, xslt, multi-
mappings from one to multiply messages (1..n), multiple to single (n ..1) and multiple
to multiple (n..m).

 Protocol transition, internally PO works with xml as format. On both sender and
receiver side, adapters are available to convert the xml messages to http, soap, file,
database protocols, sftp, AS2, JSON, Rest services or other protocols.

 Guaranteed delivery for asynchronous messaging, restarting of messages and
acknowledgements.

 Orchestration, with Business Process Management you can compose message
based workflows.

 Business Rules Management, the business rules engine is available to be used in
orchestrations.

 Monitoring, centralized monitoring for application, business or technical errors.

 Reporting, on processed messages, performance.

 Enterprise Service Repository, design environment for modelling Enterprise Services,
business objects and business processes.

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 2 of 34

2. ENTERPRISE SERVICES

SAP S4 Hana is standard delivered with Enterprise Services. An Enterprise Service provides

business functionality that is published by SAP in the Enterprise Services Repository.

Enterprise services are structured according to a harmonized enterprise model based on

process components, business objects, and global data types. They are well documented,

guarantee quality and stability, and are based on open standards.

These Standard Enterprise Services are documented on the site http://help.sap.com and

also available in the Enterprise Service Builder of SAP PO and the ES Repository Web Gui.

In SAP S4 Hana you can find them in the transaction SPROXY under the SWC S4CORE

2.1 Guidelines when to use Enterprise Services

Here you will find the guidelines when to use Enterprise Services:

 Within the Business the use of Enterprise Services for data integration with the SAP
S4 Hana is recommended for B2B (Business to Business) and A2A integrations
(Application to Application)

 The use of SAP Global data types is mandatory within the Enterprise Services.

 Use, whenever possible, Standard Enterprise Services. Make a good distinction
between A2A, B2B and A2X (Application to User) Enterprise Services, a synchronous
A2X Enterprise Service could be a bad choice in A2A integration scenarios, because
there’s no guaranteed delivery, guaranteed delivery is only possible with
asynchronous services.

 If no suitable Standard Enterprise Service can be found:
1. See if an enhancement of the Standard Enterprise Service will solve the misfit.
2. Find a standard Idoc or RFC (BAPI) that will serve the needs.
3. Create a new Enterprise Service based on SAP Global data types.

 For asynchronous Enterprise Services SAP PO is mandatory.

 Synchronous Enterprise Services may be called directly from the client to SAP
backend. The client takes than care of the error handling.

 Exceptions:
o Standard out of the box integration content delivered by SAP or third parties

(ARIBA, Sales Force).
o User interfaces, when they make use of synchronous communication and the

SAP backend is the only system involved. The SAP Netweaver Gateway with
REST services is the best way to provide data to the UI.

o Non XML content, like file to file transfers on an internal network share, LDAP
connections, Document Management Systems, when there is no content
conversion needed.

2.2 Enterprise Services Design guidelines

The design of Enterprise Services within Business is based on the following SAP documents:

o PI Best Practices Modeling
o PI Best Practices: Naming Conventions.
o Service Provisioning Handbook.pdf

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 3 of 34

o SOA400_Proxy generation and implementation.pdf
o Enterprise Services Enhancement Guide.pdf

For the Enterprise Services design the following design guidelines are used:

o Outside-in approach designing enterprise services
o Interface patterns
o Naming convention
o Message structure
o Error handling
o Database actions
o Enhancements
o ABAP proxy implementation

2.2.1 Outside-in approach

The design approach used by Business in designing Enterprise Services is the Outside-in

approach. (See chapter 4.2 of PO Best Practices Modeling document). The design is based

on the Integration Scenario Design document created by the Information Analyst. The SAP

PO analyst will translate this ISD design to SAP specific Business Objects, Service

Operations and message types.

2.2.2 Interface patterns

For SAP we use the interface patterns as described in chapter 4.4 of the PO Best Practices

Modeling document. In most cases we will only use the A2A patterns as described in

chapter 4.4.1, because PO communicates in most cases with other. Most of the

communication will be asynchronous.

The Synchronous UI based A2X service patterns as described in chapter 4.4.2 will only be

used when the SAP backend makes part of a composite UI application where SAP is one of

several backend applications. When SAP is the only backend application in an UI based

scenario, the use of SAP Gateway is the preferred solution.

2.2.3 Naming conventions

The naming conventions for SAP PO are described in chapter 3 of this document and are

derived of the PO Best Practices: Naming Conventions document.

2.2.4 Message structure

All the message data types are based on SAP Global data types, which are composed from

CCTS Core Data Types. The document Enterprise SOA – Global Data Type (GDT) Design

Guideline.pdf gives the design guidelines for the Global Data Types.

The structure of a message exists in general of a Business Document Header, Business

Document Object and Log structure. Chapter 4.1 of document Enterprise SOA – Service

Operation Design Guideline.pdf gives a description of the Business Document structure.

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 4 of 34

2.2.5 Error handling

The design guide lines about error handling are described in the documents

Service Provisioning Handbook.pdf chapter 2.5 and for the implementation in the SAP

Backend in the document SOA400_Proxy Generation and Implementation.pdf from page

2-135.

2.2.6 Database actions

The document Service Provisioning Handbook.pdf gives in chapter 2.4 guidelines and

explanations about database actions in the backend and the document SOA400_Proxy

Generation and Implementation.pdf explains the difference between change and

database actions on pages 2-139 and 2-140.

2.2.7 Enhancing Enterprise Services

The SAP Enterprise Services can be enhanced to fit specific customer requirements. The

document Enterprise Services Enhancement Guide.pdf explains how to enhance

Enterprise Services.

2.2.8 ABAP proxy implementation

Recommendations and guidelines for the ABAP proxy implementation you will find in the

document SOA400_Proxy Generation and Implementation.pdf from page 2-125 till page

2-140.

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 5 of 34

3. SAP PI NAMING CONVENTIONS

SAP has released naming conventions in the document PI Best Practices: Naming

Conventions. This document should be regarded as a framework for defining naming

conventions. Some of the recommendations below are derived from this document.

3.1 Naming Rule Notation

We follow the notation as stated in table below.

Syntax Description

x x is a fixed term

<x> (brackets) x is a variable term according to a specified rule

* (star) The previous item occurs zero, one or many times

+ (plus) The previous item occurs one or many times

? (question mark) The previous item is optional (occurs zero or one times)

| (pipe) Either the previous or the successive item occurs

(expression) Parenthesis group the expression between them

3.2 Software Catalog

3.2.1 Product Software & Software Component Structure

The business uses the following design structure of software components for the

implementation of integration scenarios.

http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/40a66d0e-fe5e-2c10-8a85-e418b59ab36a?QuickLink=index&overridelayout=true
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/40a66d0e-fe5e-2c10-8a85-e418b59ab36a?QuickLink=index&overridelayout=true

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 6 of 34

The integration scenario comprises usually four software components to separate the

different involved external applications (1), backend applications (2), integration scenario

(3) and global data types and reuse libraries (4).

SWCV 1:

EP_FIMA_CODICT_

Repository Objects

 Service Interfaces

 Message types

System A:

CODICT_D

SWCV 2:

EP_FIMA_PO

Repository Objects

 Process Integration Scenario

 Actions

 Integration Processes

 Mappings (Operation,

Message)

SWCV 3:

EP_FIMA_SAP_FI

Repository Objects

 Actions

 Service Interfaces

 Message types

System B:

D1S1100_D

Repository Objects

 Data types

 External definitions

 Function libraries

SWCV 4:

EP_FIMA_GLOBAL

Integration

Scenario:

FIMA028

External system Backend

system

Integration

Scenario

Global

Objects

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 7 of 34

3.2.2

3.2.3 SLD Product

General Rules

Syntax

Product Name <Company>_<ApplArea>(_<Group>)?_<Business

Application>

Version <Generic Version Number starting with 1.0>

Vendor <Your Company Domain Name>

Glossary

<Company> EP (business)

<ApplArea>

<Group> I | GLOBAL | MODEL| :

I , Process Integration Scenarios, Integration

processes and mappings

GLOBAL: Data types, External definitions and

function libraries

MODEL: Models

<Business Application> Specify your actual business application or technical

component, e.g SAP HR , COMBAT, GEA etc.

<Generic Version Number> 1.0 ->1.1 ->2.0 etc

<Company Domain Name>

3.2.3.1 Examples

EP_FIMA_CODICT

EP_FIMA_I

EP_FIMA_SAP_FI

EP_FIME_SAP_CA

3.2.4 SLD - Software Units

Explanation

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 8 of 34

The Product is a combination software units. Each unit is a separate installation on a

technical different unit. A unit defines the type of system, where it has to be installed. For

example a SAP ECC Server and SAP Portal

Within the Business the name of the Software Units follows the naming convention of the

Products.

Examples

EP_FIMA_CODICT

EP_FIMA_I

EP_FIMA_SAP_FI

EP_FIME_SAP_CA

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 9 of 34

3.2.5 SLD - Software Components

General Rules

Syntax

SWCV Name <Company>_<ApplArea>(_<Group>)?_<Business

Application>

Version <Generic Version Number starting with 1.0>

Vendor <Your Company Domain Name>

Glossary

<Company> GU (business)

<ApplArea>

<Group> PI | GLOBAL | MODEL| :

PI , Process Integration Scenarios, Integration

processes and mappings

GLOBAL: Data types, External definitions and

function libraries

MODEL: Models

<Business Application> Specify your actual business application or technical

component,

<Generic Version Number> 1.0 ->1.1 ->2.0 etc

<Company Domain Name> Europarl.europe.eu

3.2.5.1 Examples

EP_FIMA_CODICT

EP_FIMA_I

EP_FIMA_SAP_FI

EP_FIME_SAP_CA

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 10 of 34

3.3 SLD objects

3.3.1 Technical Systems

Naming conventions only apply to non-SAP/3rd party systems since SAP systems are

registered in the SLD automatically; hence maintain technical systems only when they are

not registered automatically.

Syntax

Technical System <Application Area>?_<Business Application>_<Stage>

Glossary

<Application Area>

<Business Application> Specify your actual business application or technical

component, e.g SAP HR , COMBAT, GEA etc.

<Stage> S|D|T|A|P

(for Sandbox, Development, Test, Acceptance,

Production)

3.3.1.1 Examples

CODICT_D

3.3.2 Business System

Syntax

SAP System <SystemID><Client>_<Stage>

Other System <Application Area>?_<Business Application>_<Stage>

Glossary

<SystemID> Specify the three digit number of your SAP system

<Client> Specify the client number of your SAP system

<Application Area>

<Business Application> Specify your actual business application or technical

component, e.g SAP HR , COMBAT, GEA etc.

<Stage> S|D|T|A|P

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 11 of 34

Syntax

(for Sandbox, Development, Test, Acceptance,

Production)

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 12 of 34

3.3.2.1 Examples

D1S100_D

3.3.3 Business Sytem Group

Syntax

System Group <Group Description>_<Stage>

Glossary

<Description> EP_

<Stage> S|D|T|A|P

(for Sandbox, Development, Test, Acceptance,

Production)

3.3.3.1 Examples

EP_S

EP_D

EP_A

EP_P

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 13 of 34

3.4 Enterprise Service Repository Objects

3.4.1 Folder

We will use folders in the following cases:

 Use folders to separate your different model types, e.g. folders for model types

‘Process Component Model’, ‘Process Component Interaction Model’, ‘Integration

Scenario Model’, etc.

 Use folders to separate different object types, e.g. a folder ‘mapping’ consisting of

subfolders ‘message mapping’, ‘operation mapping’, ‘libraries’, ‘configurable

parameters’, etc.

3.4.1.1 Examples

Mappings

OperationMappings

 Messagemappings

3.4.2 Namespace

Syntax

Namespace http://<Company Domain

Name></ApplArea>/?<Business Application>/?<SAP

Module>/?<Group>/<Integration Code>

Glossary

<Company Domain Name> europarl.europe.eu

<ApplArea>

<Business Application> Specify your actual business application or technical

component, e.g SAP, COMBAT, GEA etc.

<SAP Module> ca | fi | hr | mm | pm | isu e.tc.

<Group> po| global | model| :

PO , Process Integration Scenarios and mappings

global: Data types, External definitions and function

libraries

modal: Models

<Integration Code>

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 14 of 34

3.4.2.1 Examples

http://europarl.europe.eu/fima/codict/I002

http://europarl.europe.eu/fima/po/I0002

http://europarl.europe.eu/fima/sap/ca/I002

3.4.3 Process Integration Scenario & Action

Syntax

Integration Scenario <Integration Code>_<ISD Description>

Action <Business Object><Operation>

Glossary

<Integration Code> Indentifier of the Functional specification

<ISD Description> Description of the functional specification

<Business Object Business Object or MessageType from external

definition

<Operation> Send | Receive | Create | Request | Change |

<Other>

3.4.3.1 Example

Integration Scenario: FIMA-I0002_UPDATE_BUSINESS_PARTNER_FROM_CODICT

Action; BusinessPartnerSend

3.4.4 Data Type

The Data Types are based on the SAP Global Data types. Which you can find in the

Syntax

Data Type Name <Business Object>

Glossary

<Business Object> Specify the underlying business object representing

business content

3.4.4.1 Example

BusinessPartner

ExchangeRate

http://europarl.europe.eu/
http://europarl.europe.eu/fima/po/I0002
http://europarl.europe.eu/fima/sap/ca/I002

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 15 of 34

3.4.5 Data Type Enhancement

We only use Data Type Enhancement to enhance standard Data Types delivered by SAP

Syntax

Data Type Enhancement <Basic Data Type Name><Description|Area>?

Glossary

<Basis Data Type> Specify the data type the data type enhancement is

based on

<Description> Describe the kind of enhancement

<Area> Describe the area that needs the enhancement

3.4.5.1 Example

3.4.6 Message Types

Syntax

Message Type Name <Business Object><Action>?<Transaction Activity>

Glossary

<Business Object> Specify the underlying business object representing

business content

<Action> Create | Change | Update | Cancel | Maintain |

Modify | Delete | Read | <Other>

<Transaction Activity Notification | Request | Confirmation | Query |

Response | <Other>

3.4.6.1 Example

BusinessPartnerCreateQuery

BusinessPartnerUpdateRequest

BusinessPartnerCreateConfirmation

3.4.7 Fault Message Type

Syntax

Fault Message Type <Business Object><Error Type>?

Glossary

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 16 of 34

Syntax

<Business Object> Specify the underlying business object representing

business content

<Error Type> Specify an error category, e.g., authorization error,

authentication error, error during update, etc

3.4.8 Service Interface

Definition

Syntax

For Interface Pattern stateless:

Operation Name <Business Object><Action><Transaction

Activity>?_<Mode>

For Interface Pattern stateless XI 3.0 compatible:

Operation Name <Business Object><Action><Transaction

Activity>?_<Mode>_<Direction>

Glossary

<Business Object> Specify the underlying business object representing

business content

<Action> Create | Change | Update | Cancel | Maintain |

Modify | Delete | Read |Change | Check <Other>

(Change = “Last one Wins” versus Update = “First

One Wins”)

<Transaction Activity> Request | Query | Notification | Confirmation |

Response | <other>

<Mode> SY| AS

<Direction> IN | OUT

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 17 of 34

Figure 2: Transaction Activity

“

Figure 3: Decision Tree

Example:

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 18 of 34

BusinessPartnerUpdateRequest_AS_IN

BusinessPartnerQueryResponse_SY_IN

3.4.9 External Definition

Syntax

External Definition <Business Object | Message Type>

Glossary

<Business Object> Specify the underlying business object representing

business content

< Message Type> Use the message type as specified in the XSD for

instance

3.4.9.1 Example

BusinessPartner

3.4.10 Interface Objects – Context Object

Syntax

Context Object <Meaningful Description | Respective Element in

xpath Expression>

3.4.10.1 Example

MaterialNumber

MaterialDescription

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 19 of 34

3.4.11 Message Mapping

Syntax

Message Mapping <Source Message Type>(_and_<Further Source

Message Type>)*_to_<Target Message

Type>(_and_<Further Target Message

Type>)*(_multi)?

Glossary

<Message Type> Specify the message type name

3.4.11.1 Example

InvoiceNotification_to_InvoiceNotification_multi

3.4.12 Mapping Templates

Syntax

Mapping Template <Source Element>_to_<Target Element>_Template

Glossary

<Element> Specify the element or node name

3.4.12.1 Example

VendorAddress_to_BusinessPartnerAddress_Template

OrderItem_to_OrderDetails_Template

3.4.13 Operation Mapping

Syntax

Operation Mapping <Source Service Operation>(_and<Further Source

Service Operation>)*_to<Target Service

Operation>(_and<Further Target Service

Operation>)*(_multi)?

Glossary

<Service Interface> Specify the service interface name omitting direction

<Service Operation> Specify the service operation name omitting mode

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 20 of 34

3.4.13.1 Example

FlightReportCreateNotification_ to_FlightReportCreateNotification

IDocInvoic02_to_CxmlInvoice1.1

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 21 of 34

3.4.14 Imported Archive

Syntax

For archives containing one single mapping only:

Archive Name <Source Message Type>_to_<Target Message

Type>_<Technology>

For archives containing several mappings:

Archive Name <Application | Mapping Category>(_<Technology>)?

Glossary

<Message Type> Specify the message type of the source and target

message

<Technology> XSLT | Java

<Application> Specify an application the archives are related to

<Mapping Category> Use a group name to categorize your archives

3.4.14.1 Example

PurchaseOrderCreateRequest_to_PurchaseOrderCreateRequest_xslt

3.4.15 Function Library

Syntax

Library Name <User Defined Function Category>

Glossary

<Function Category> Specify a group name to categorize your user defined

functions

3.5 Error Handling

Sequencing from different sources is not possible in the current set up of SAP PO at EP,

because BPM is not used. This has to be done in S/4 Hana by a ABAP program or workflow.

The only thing which can be done is EOIO (Exact Once in Order) processing. Messages are

put in a queue and processed in exact order and if a message gives an error the queue is

blocked. (for this blocking some solutions are available like 'Extended EOIO Error

handling').

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 22 of 34

For error handling there is Message Alert Configuration. In an alert rule, you define the

runtime conditions that that system should generate an alert for. These alerts can be send

by mail. Example: if the send XML isn't valid a mail can be send a responsible employee.

These alerts are technical.

Furthermore, something can be done with content based routing. If the business content of

the message doesn't meet the requirements a mail can be send to the responsible

employee or the alert frame work, or the system log of the backend system can be called

by RFC to raise an alert or log entry.

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 23 of 34

3.6 Integration Directory Objects

Directory – Business Service

Definition

<Process of the party>

Example

Purchasing (if customer)

Sales (if supplier)

3.6.1 Partner

Syntax

Partner <PartnerName>

Glossary

<PartnerName> A descriptive name of the partner

3.6.2 Business System

According naming conventions Business Systems in SLD, when a system is not in the SAP

Solution Manger landscape it is business component.

Syntax

SAP System <SystemID><Client>_<Stage>

Other System <Application Area>?_<Business Application>_<Stage>

Glossary

<SystemID> Specify the three digit number of your SAP system

<Client> Specify the client number of your SAP system

<Application Area>

<Business Application> Specify your actual business application or technical

component,

<Stage> S|D|T|A|P

(for Sandbox, Development, Acceptance, Production)

3.6.3 Business Component

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 24 of 34

Non SAP external system.

Syntax

Other System <Application Area>?_<Business Application>_<Stage>

Glossary

<Application Area>

<Business Application> Specify your actual business application or technical

component,

<Stage> Z|O|A|P

(for Sandbox, Development, Acceptance, Production)

3.6.4 Receiver Rule

t.b.d.

3.6.5 Sender Agreement

No naming automatically named

3.6.6 Receiver Agreement

No naming automatically named

3.6.7 Integrated Configuration

No naming automatically named

3.6.8 Communication Channnel

Syntax

Communication Channel <Adapter><Direction>_<MessageType>

Adapter SOAP | HTTP | FILE | SFTP | JDBC | IDOC | RFC

Direction Sender | Receiver

MessageType Specify the message type of the source and target

message

3.6.8.1 Example

SOAPSender_BusinessPartnerRequest.

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 25 of 34

3.6.9 Configuration Scenario

Syntax

Integration Scenario <Integration Code>_<ISD Description>

Glossary

<Integration Code> Indentifier of the Functional specification

<ISD Description> Description of the functional specification

3.6.9.1 Example

FIMA-I0002_UPDATE_BUSINESS_PARTNER_FROM_CODICT

3.6.10 Value Mapping Group

No used because of AIF

3.6.11 Integration Flow

Probably not used

3.6.12 AlertRule

t.b.d.

3.6.12.1 Example

DefaultAlertRule

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 26 of 34

4. APPLICATION INTEGRATION FRAMEWORK

4.1 Introduction

The SAP Application Interface Framework is located on a SAP application system. Underneath picture

shows an overview of the system architecture containing the SAP Application Interface Framework.

The figure displays a system architecture, where data is received from the SAP NetWeaver PI.

However, the SAP Application Interface Framework supports also several IDoc scenarios as well as

an own runtime and persistence layer.

Data is send to the SAP system where the SAP Application Interface Framework is located. The SAP

application system receives the data and calls the SAP Application Interface Framework. In the SAP

Application Interface Framework, received data is processed. The data is transformed from the raw

data structure (source) to the SAP data structure (destination). During this transformation, checks can

be executed. If a check does not succeed, further processing of the message in the SAP Application

Interface Framework stops. Value mappings are executed to fill the SAP data structure. After all the

data is mapped from the raw data structure to the SAP data structure, actions are called. Actions are

used to execute the business logic of the interface in the SAP Application Interface Framework. Within

an action, you can call an SAP standard function, your own customer-specific function, or a BAPI. The

mapping of data, the executed checks, value mappings, and actions depend on the Customizing of the

interface. Errors which occur while processing a message in the SAP Application Interface

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 27 of 34

Framework, for example, if a check does not succeed or if a value mapping fails, are written to the

application log. Application log messages are loaded into the Monitoring and Error Handling

transaction and support the business user in solving errors. Additionally, you can configure the system

to send alerts to users, if certain errors occur during message processing. The process described

above is concerned with how data is received by the SAP Application Interface Framework. It is also

possible to send data using the SAP Application Interface Framework. Therefore, an outbound

interface is needed. To start the processing, a report, function module, or batch job is necessary to call

the SAP Application Interface Framework. In the SAP Application Interface Framework, data is

mapped from the SAP data structure (source) to the raw data structure (destination). Customized

checks and mappings are executed and errors that occur are written to the application log. If the

processing in the SAP Application Interface Framework is successful, the data will be send to the

receiver.

Both tools (PO and AIF) share a few features, however each of them has its specific

advantages.

Combination of these two tools allow us to separate business logic from integration logic in

our scenarios. This is general recommendation for all IT landscapes with both business

applications and integration platforms. In such scenario we can put all integration logic to

PO and all business logic into AIF.

For example, if we have to cope with different kinds of connectivity protocols like FTP,

RFC or SOAP we should handle that in PO. PO should also be used for routing messages

between different environments and technical systems. Structure mapping between

different message formats can be also handled by SAP PO.

On the other hand data formatting, validation, value mapping and business logic should be

performed in AIF. For example we can easily enrich our data with relevant information

retrieved from database tables or use a standard function module to check material

availability. Also the value mapping rules can be accessed and maintained by business

users and they can participate in the error handling process.

With AIF it is not possible to connect many legacy systems directly, if legacy systems don’t

allow to call web services. In such scenarios we should use PO for connection with

different systems and then let AIF perform all business logic.

The general rule is to have PO handle the communication across the landscape with all its

and take advantage of AIF to perform the business logic.

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 28 of 34

4.2 Usage

4.2.1 Error Correction

SAP AIF is a business tool that is used primarily by business users to correct interface errors.

4.2.2 Translation - Fix Values

Fix Values are used when a one-to-one translation is required from old to new (and new to old) field

contents. In an inbound interface scenario a legacy application may continue with their old code set

and pass that to the SAP system which would be based on the new code set. The reverse is also true.

SAP would pass the new code set data to a legacy application and the translation from new to old will

be handled by SAP AIF.

4.2.3 Translation - Value Mapping

Value Mapping is a complex derivation of data based on the source field contents. It may be

dependent on a single or multiple interdependent data sets. Value Mapping offers a framework to

configure SQL statements, Conversion Exits or a Default Value (if nothing is returned). Custom

Function Modules can be configured for more complex requirements.

4.2.4 Data Checks

Various checks can be implemented for an interface. A check could be to allow the interface to

succeed if field A = a variable or a constant, or else fail the message. This is where the business user

will come in and change the contents of field A to the correct value and reprocess the interface. Of

course simple (no code) and complex checks (Function Module) can be implemented.

4.2.5 Actions

An Action is linked to a processing step of an interface in SAP AIF. An Action results in the triggering

of at least one Function Module call. An example of an Action is inserting a Balancing Line Item in an

FI document (if the credits do not tally with the debit entries) prior to posting. Similarly an Action can

also be used to invoke a post-processing step.

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 29 of 34

5. BUSINESS RULE FRAMEWORK PLUS (BRF+).

Business Rule Framework plus (BRF+) provides a comprehensive application programming interface

(API) and user interface (UI) for defining and processing business rules. It allows you to model rules in

an intuitive way and to reuse these rules in different applications.

Here are some examples of scenarios in which applications use BRF+:

 Validation of data and detection of invalid data and states

 Matching responsibilities, suitable products, and locations

 Calculation of costs, overhead, and risks

 BRF+ as a technical configuration engine

 Constants, or default data restriction

Major BRF+ components include application, function, catalog, expression, action, data object.

The interface between a business rule modeled with BRF+ and an application using that rule is

provided by a BRF+ function. The function serves as a container for the entire business logic of a rule,

no matter how complex it may be. Rules are implemented as expressions which are assigned to a

function. The rule input is known as context and the rule output is called result. Context and result

consist of data objects of one of the following types: element, structure, and table.

BRF+ supports features such as simulation, trace, transport, XML export and import.

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 30 of 34

BRF+ offers a unified modeling and runtime environment for business rules that addresses both

technical users (programmers, system administrators) as well as business users who take care of

operational business processes (like procurement, bidding, tax form validation, etc.). The different

requirements and usage scenarios of the different target groups can be covered with the help of the

SAP authorization system and a user interface that can be individually customized.

Being integrated into SAP NetWeaver, BRF+-based applications can look at, and model, business

rules from a strictly business-oriented perspective, rather than starting with the underlying technical

artifacts. This is because the integration allows for direct access to the business objects available in

the SAP dictionary (like customer, supplier, material, bill, etc.).

In addition to the predefined expression types (decision table, decision tree, formula, database

access, loops, etc.) and actions (sending e-mails, triggering a workflow, etc.), BRF+ can be extended

by custom expression types. Also, direct calls of function modules as well as ABAP OO class methods

are supported so that the entire range of the ABAP programming language is available for solving

business tasks.

BRF+ comes with an optional versioning mechanism. Versioning can be switched on and off for

individual objects as well as for entire applications. Versioned business rules are needed in certain

use cases for legal reasons, but they also allow for simulating the system behavior as it would have

been at a particular point in time.

Once the rule objects are in a consistent state and active, the system automatically generates ABAP

OO classes that encapsulate the functional scope of the underlying rule object. This is done on an on-

demand base and speeds up processing.

The execution of functions as well as of single expressions can be simulated. The processing log of

the simulation is useful for checking the implementation and for investigating problems.

BRF+ applications can be exported and imported as an XML file. This is an easy way of creating a

data backup. XML files can also be used for deploying rule applications throughout the company.

BRF+ can also be used in AIF structure mapping and AIF checks and not only with AIF value

mapping.

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 31 of 34

6. INTEGRATION OF AIF WITH BRF+.

6.1 Rules for usage.

As described above, the BRF+ application is the perfect tool to translate the customer’s business rule

into comprehensible coding, with the advantages of re-usability, ease of transport and simple

maintenance overview within one transaction, of all BRF+ defined rules.

Those BRF+ rules can also be integrated within the AIF proxy application, therefore it was decided, as

principles, to make usage of BRF+, for the definition of all business rules within the FMS project.

This will ensure that any customer’s specific need, will be covered by only one definition, and be used

in any flows related to that particular business.

The rules for usage, is simple, if a new business need is required, first action is to check within the

BRF+ framework (transaction BRFPLUS), and search in the repository catalog on the previously

created rules.

If no rules for the desired requirements can be found, then create a new one within the customer area

(Z* naming convention)

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 32 of 34

6.2 AIF specifics with BRF+

In the SAP Application Interface Framework, the BRF+ integration is done with a function that you
define for value mapping, structure mapping, and checks.

In order to use a BRF+ function in the SAP Application Interface Framework, the function needs to be

set up in the following specific ways:

6.2.1 Structure Mapping

A function for structure mapping within an application can have the following context:

Component Name in

BRF+ Function

Description

RAW_STRUCT Contains the source structure of the interface

RAW_LINE Contains the row of the table/structure of the source structure for which the

BRF+ mapping function is currently executed

SENDING_SYSTEM A field of the source structure needs to be maintained in Field for the

Sending System in the interface definition. If the BRF+ function should

behave differently for different senders, you can use this parameter to

differentiate the behavior.

OUT_STRUCT Contains the destination structure

DEST_LINE Contains the data of the current line in the destination structure. You might

change the data of this parameter in this function module.

DEST_TABLE Contains the data of the current structure in a table

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 33 of 34

You can define the following objects as result data objects:

 OUT_STRUCT

 DEST_LINE

 DEST_TABLE

6.2.2 Value Mapping

A function for a value mapping within an application needs to be defined with the following context:

Component Name in

BRF+ Function

Description

 VALUE_IN

 VALUE_IN2

 VALUE_IN3

 VALUE_IN4

 VALUE_IN5

The fields defined in the field mapping (Fieldname 1 to Fieldname 5) are

used as importing parameters.

SENDING_SYSTEM A field of the source structure needs to be maintained in Field for the

Sending System in the interface definition. If the BRF+ function should

derive different values for different senders, you can use this parameter

to differentiate the behavior.

Furthermore, one result data object, with a name of your choice, is required. The resulting value of the

BRF+ function is passed back to the SAP Application Interface Framework. The value is passed to the

corresponding field in the destination structure.

6.2.3 Check

A function for a single check within an application can have the following context:

Component Name in

BRF+ Function

Description

DATA_STRUCT Contains the data of the current structure. If the check is executed during

structure mapping, the current structure is either the SAP or raw data

structure. This is dependent on the Check raw data checkbox in the check

assignment. If the check is executed in an action, the structure is the

destination structure. If the check is executed for a condition, the current

structure is the source structure.

DATA_LINE Contains the current line of the structure that is mapped

DATA_FIELD If the check is executed in the structure mapping or as condition and at least

Fieldname 1 is defined, this field contains the value of the field defined in

46_FMS19 - Annex 1 Part F - FMS Environment and Development Standards_def Page 34 of 34

Component Name in

BRF+ Function

Description

Fieldname 1.

 VALUE1

 VALUE2

 VALUE3

 VALUE4

 VALUE5

Contains the values of the fields defined when the check is assigned

(Fieldname 1 to Fieldname 5).

SENDING_SYSTEM A field of the source structure needs to be maintained in Field for the

Sending System in the interface definition. If the BRF+ function should

behave differently for different senders, you can use this parameter to

differentiate the behavior.

One result data object can be added. This result data object should simply indicate if the result of the

function is successful or if it has an error.

