	[image: image44.png]
	OP.A.4 IT Infrastructure and Security

Software Delivery Integration and Source Code Management
with

Apache™ Subversion®
Document Information
	Author
	

	Version
	2.2

	Version Date
	12/12/2013

	Status
	Final

	Approved by
	

	Reference
	

Document History
	Version
	Date
	Name
	Pages
	Remarks

	1.0
	30/12/2011
	
	All
	Final revision of document, ready for distribution.

	2.0
	06/03/2013
	
	all
	general revision

	2.0.1
	20/03/2013
	
	all
	minor corrections

	2.1
	23/10/2013
	
	all
	Updated delivery instructions.

	2.2
	12/12/2013
	
	all
	General review

Table of Contents

31
Introduction

1.1
Purpose
3
1.2
Scope
3
1.3
Conventions in this Document
4
2
Guidelines
4
2.1
Directory Structure
4
2.2
General Guidelines
5
2.3
Best Practices for Contractors
5
3
Organisation
6
3.1
Create SVN Repository
6
3.2
Folder Permissions
6
3.3
Roles and Responsibilities
7
4
Procedure
8
4.1
Main Steps
8
4.2
Workflow Schema
14
5
Subversion Clients
15
5.1
Windows Client
15
5.2
Command Line Client
18
5.3
Web Interface
19
5.4
Submin Administration Interface
19
6
XCHANGE Repository
19
7
Continuous Integration
19
7.1
Purpose
19
7.2
Risks
19
7.3
Software Acceptance Process
20
7.4
Automated Build Process
20
8
Additional Information
24
8.1
Acronyms, Abbreviations
24
8.2
URLs
24
8.3
Reference Documents
24
8.4
Contact Data
24

1 Introduction

Software deliveries used to arrive by various transmission channels at the Publications Office (email, ftp, CD, DVD, etc) and were stored on a shared network drive that was made accessible to the different actors of software delivery and installation. Management of this network drive proved to be cumbersome and the manual process to store everything in the right place was prone to errors. In order to improve this situation, Subversion was selected as the tool to ensure that software deliveries are received in a correct and structured way.

Apache™ Subversion® (SVN) is a version control system that manages revisions of files and directories and keeps a history of changes. It will replace the network drive that was previously used as a common repository for files related to software development projects.

1.1 Purpose

The Publications Office receives software deliveries (application releases, updates and patches) from contractors to be installed in its computer environment. This document describes the role of Subversion (SVN) in software delivery and installation, and particularly how it integrates with the use of Jira DMT/DMP procedure for change management, which is part of the Software Acceptance Procedure in force at the Publications Office.
Software deliveries usually arrive as binary files, together with the corresponding source code and all related documents: installation instructions, release note, testing scenarios, test report, etc. Subversion will be used to store these files and any other files delivered with the software for safekeeping.

Contractors are obliged to systematically deliver the source code together with the binary installation files (please note that binary files can also be generated at the Publications Office from the source code of the application; please see section 7 Continuous Integration for details). The goal is to have source and binary files in the same place and take advantage of additional functionality offered by Subversion. This will make it possible to partially automate the build process and verify that the delivered source code corresponds to the binary delivery. The additional advantage offered by Subversion is that software deliveries arrive at the Publications Office in a well-structured way, and are uniquely identifiable.
1.2 Scope
This document describes how the procedure that regulates the installation of software at the Publications Office interacts with the delivery channel and the level of integration of the different IT systems (Subversion, Jira) that support this process.
1.3 Conventions in this Document
A monospaced typeface is used for commands that have to be typed exactly as they are displayed.

Boxed text shows sections of configuration files or similar.

Folder names are printed in italic typeface when they appear in normal text, in monospaced typeface elsewhere.

	[image: image1.png]
	Text that follows this icon indicates a warning; please make sure that you follow these instructions to the letter.

	[image: image2.jpg]
	Text that follows this icon indicates important information that should be taken into account.

2 Guidelines

2.1 Directory Structure

A Subversion repository is usually related to the development of a software development project and requires the following directory structure to be present:
	/trunk
	holds the main line of development

	/branches
	contains branch copies

	/tags
	contains tag copies

	/deliveries
	contains a unique software delivery and all its related documents: installation instructions, release note, testing scenarios, test report...

	/installations
	contains files and folders created and modified during installation

When a repository is created, the following folders are created within the trunk folder:

	/build
	build scripts to make the automated build of the binary files from the delivered source code possible

	/doc
	all documentation related to the application

	/src
	source code of the application, unzipped

	/test
	files related to tests of the application: test scripts, log files and reports

Projects can include sub-projects. The following image shows the typical directory structure for a project repository without subprojects (modules):

[image: image3.png]
Figure 1: Typical Directory Structure for a Project Repository

	[image: image4.jpg]
	When a repository is used to manage an application/project and the application consists of components or modules, subdirectories corresponding to the sub-projects will be created at the root of the repository; the trunk, branches, tags, deliveries, and installations subdirectories will be created at the level of the sub-project. Likewise, the build, doc, src, and test folders will be created in the trunk folder of the sub-project (\<repository>\<component>\).

2.2 General Guidelines

· The repository name in Subversion generally matches the project key as specified in Jira for the corresponding project/application. The same restrictions as in Jira apply: a Jira key consists of a maximum 10 upper case characters without spaces, special characters and numbers.
· As an alternative delivery vehicle Subversion dumps are also acceptable, especially for the initial load of the repository. Please note that this will be possible only under exceptional circumstances and after an agreement has been obtained from the Publications Office.
· The contractor should notify the Publications Office before a large delivery is to be uploaded into the repository.

· The Subversion repository should only contain source code that corresponds to software deliveries. Contractors should have their own source code repository to support the development lifecycle. If a contractor would like to use the Subversion repository of the Publications Office during development, an agreement has to be obtained first.
2.3 Best Practices for Contractors
Contractors typically manage the source code related to the development of their application in the trunk/src folder. Aside from the standard directory structure (please see section 2.1 Directory Structure), the Publications Office does not impose any rule on how the contractor organises the source code. However, contractors are encouraged to adopt a best practice that is followed during the entire project life cycle. An example best practice is available on the Subversion web site (please refer to appendix 8.2 URLs for a hyperlink).

The Publications Office recommends adopting the following rules as part of the best practice:
· The trunk folder should be used for the main development.
· Branches should be used to indicate diversions from the trunk for a specific purpose (usually bug fixes and patches to a previous release); nevertheless, software deliveries have to be done from the trunk.
· Tags should be created to identify a specific release of an application.
· Each delivery should be tagged using the tags folder; the tag should contain a short descriptive name of the release.
· Branches and tags should be created directly on the server by using the SVN copy command (svn cp with the SVN command line client or "Copy to…" in the Subversion repository browser).
	[image: image5.jpg]
	Files and folders that are already present in an SVN repository and need to be copied to another folder (for example when preparing a software delivery or creating branches and tags) should be copied using the SVN copy command (svn cp with the SVN command line client or "Copy to…" with the Windows client); this command will be executed on the SVN server and will not create a physical copy but a link on the hard disk and preserve space.

3 Organisation
3.1 Create SVN Repository

OP IT (the IT department of the Publications Office) creates the Subversion repository for a particular project. This makes the repository available under the name of the project, for example:
https://webgate.ec.europa.eu/publications/svn/<project>/

URL to Access Subversion Repository of <project> with an SVN Client
3.2 Folder Permissions
Contractors and project managers have read and write access to the trunk, branches, tags and deliveries folders, which contain all files related to software development. The project manager or the contractor will commit all files related to a software delivery to the deliveries folder. OP IT has read-only access to the trunk, branches, tags and deliveries folders.
OP IT has read and write access to the installations folder; contractors and project managers have only read access to the installations folder. An integrator of OP IT will create a directory in the installations folder that uniquely identifies a software installation and any additional information related to the installation process.

The installations folder is used to attach updated files produced during installation in the test/acceptance environment, for example the QA_install document. The name of the installations subfolder corresponds to the number of the installation request, for example DMTDMP-12345. The information in the installations folder will also be used by the integrator who repeats the installation of the software delivery in the production environment.
<project>/installations/DMTDMP-12345
	[image: image6.jpg]
	Contractors and project managers have read access to the installations folder where installation comments and files which refer to a DMTDMP installation request for a software delivery will be put. Contractors are required to take these comments into account for subsequent deliveries.

[image: image44.png]
[image: image7]
Figure 2: Write Access on SVN Folder Structure

3.3 Roles and Responsibilities

3.3.1 Project Managers
Project managers accept the delivery and create the JIRA DMT/DMP installation request.
3.3.2 Contractors
Contractors who develop software for the Publications Office provide the source code and the installation binaries. Contractors will manage the software deliveries in the deliveries root folder of the project repository.

The contractor has to have a client program installed that enables the use of the Subversion repository. In a Microsoft Windows environment, the Publications Office recommends TortoiseSVN, a Subversion client, implemented as a Microsoft Windows shell extension. In a Unix environment, a command-line client is available from the Subversion home page (see section 5 Subversion Clients).

The contractor delivers the application by checking in all contractually specified delivery files (e.g. binary distribution and documentation required for the installation) into the deliveries folder. The trunk and branches folder structure is used to manage the source code and associated documentation.

	[image: image8.jpg]
	The deliveries folder is also used for continuous integration (see section 7 Continuous Integration). It is essential that a software delivery and all its related documents (installation instructions, release note, test report, etc) are provided in the deliveries folder either via commit or link (SVN copy).

3.3.3 OP IT
OP IT (the IT department of the Publications Office) are in charge of administration and management of Subversion; they create repositories for new projects, create users and manage access and permissions of the project repositories.

The OP IT Integration and Test Team installs the delivery that corresponds to the revision number provided in the DMT/DMP request and tests the final installation.

Within OP IT, the QA team (quality assurance team) consists of the integrators and testers who check the provided delivery, perform the installation, verify the installation and perform basic tests of the application after installation.

4 Procedure
4.1 Main Steps

The main steps to follow as part of this procedure are as follows:

4.1.1 Prepare the Delivery

The contractor uploads (checks in) the delivery from a local folder or copies (svn cp with the SVN command line client or "Copy to…" with the Windows client) the relevant files and folders from the trunk/src and trunk/doc folders to the deliveries subfolder of the project in the Subversion repository.
The deliveries folder must be cleaned up (emptied) so that it contains only files related to a specific delivery.
	[image: image9.jpg]
	Please note that deleting files and folders within SVN will not actually delete them, they can still be found back by supplying the revision number from before the delete action was taken, they will only become invisible in later revisions.

[image: image10.png]
If the software delivery does not contain binary files, i.e. the binaries are built at the Publications Office, please refer to section 7 Continuous Integration.
	[image: image11.png]
	If the deliveries folder is not cleaned before the next delivery is uploaded, files from the previous and the current delivery will be merged, which may cause problems during the installation.

4.1.2 Create the Delivery
The contractor has to deliver the installation manual and source code that was used to build the binary files together with the corresponding binary files (except when the binary files are built at OP, in which case please refer to section 7.4 Automated Build Process).
The installation manual and source code must be committed to the trunk folder (to trunk/doc and trunk/src, respectively). These folders are copied (svn cp with the SVN command line client or "Copy to…" with the Windows client) to the deliveries folder to include them with the current software delivery.
Binary files and other relevant files which are not under the trunk folder are committed to the deliveries folder.
[image: image12.png]
Figure 2: Files and Folders are Committed or Copied to the deliveries Folder

[image: image13.png]
Figure 3: Add comments on each commit or modification
[image: image14.png]
Figure 4: Copy Source Code to the deliveries Folder

The installation manual that corresponds to the delivered binary code is committed or copied (svn cp with the SVN command line client or "Copy to…" with the Windows client) to the deliveries folder from the trunk/doc folder.
[image: image15.png]
Figure 5: Copy Installation Document to the deliveries Folder

Similarly, copy any other relevant files or folders from the trunk to the deliveries folder.

Optionally (but recommended), once the software delivery is ready, create a tag of the software delivery to identify the software release by copying the deliveries folder to a new folder under tags with the name of the software version/release name, e.g. tags/1.2.
[image: image16.png]
Figure 6: Create a Tag - Copy the deliveries Folder to the tags Folder
The software delivery is now uniquely identified by the URL to the tags subfolder you just created and the SVN revision number; please provide either the deliveries or the tags URL with the corresponding revision number to the project manager in the next step.

[image: image17.png]
	[image: image18.png]
	Should the contractor not be able to submit the delivery to Subversion, the project manager is responsible for this action.

4.1.3 Notify Project Manager

The contractor notifies the project manager of a new delivery and includes the URL to either the deliveries or the tags subfolder and the revision number that was obtained in the previous step as reference.

4.1.4 Create DMT/DMP

The project manager creates a DMT/DMP (installation request) and includes a reference to the Subversion project repository (URL) in the field SVN Folder and a reference to the SVN revision number in the field SVN Revision of the DMT. This makes the link between the DMT/DMP request in Jira and the delivery in Subversion.
[image: image19.png]
SVN Revision: SVN revision number of the software delivery
SVN Folder: URL to the deliveries folder in the SVN project repository
	[image: image20.jpg]
	The software delivery is uniquely identified by these two properties (URL and revision number).

4.1.5 Create Link to Jira DMT/DMP

The OP IT integrator copies the deliveries folder in SVN to a subfolder of the installations folder identified by the DMTDMP number. Files that are modified or added during the installation like the QA_install.doc will be committed to this subfolder. In the Copy to… window, enter the DMTDMP number:

[image: image21.png]
Figure 7: Copy the deliveries Subfolder of the Specified Revision Number to the installations Folder, Specifying the DMTDMP Number
4.1.6 Start DMT Installation

The OP IT tester checks out the installations folder related to a specific DMTDMP to the local hard disk.

[image: image22.png]
Figure 8: Check out the installations Folder

[image: image23.png]
4.1.7 Update Installations Folder

After each step of acceptance, installation, and validation, the folder will be committed to SVN; the subfolder in SVN contains all documents and files that were created and/or updated during the installation.
[image: image24.png]
4.1.8 Start DMP Installation

When the DMT is closed, the OP IT production integrator will check out the HEAD revision of the DMTDMP folder in order to process the DMP that corresponds to the DMT. This makes it possible for the production team to identify the files relevant for the installation on the production system, including the QA documents and files that were added during installation on the test system.

4.2 Workflow Schema

The following table repeats the steps of the procedure and illustrates the responsibilities of the actors.
	Step
	Contractor
	Project Manager
	OP.A4

	upload software delivery to SVN
	[image: image25.bmp]
	
	

	update source code on SVN
	[image: image26.bmp]
	
	

	notify project manager
	[image: image27.bmp]
	
	

	create DMT/DMP (installation request)
	
	[image: image28.bmp]
	

	copy delivery to installations folder
	
	
	[image: image29.bmp]

	create link to DMT/DMP
	
	
	[image: image30.bmp]

	acceptance, installation in test, validation
	
	
	[image: image31.bmp]

	validate application functionality
	
	[image: image32.bmp]
	

	installation in production
	
	
	[image: image33.bmp]

5 Subversion Clients

Subversion is the name of the server product; in order to access the repositories on the Subversion/SVN server, a Subversion client has to be installed. The most popular client on Windows, TortoiseSVN, installs as a Windows Explorer extension; to open TortoiseSVN you need to right-click on a folder. The Unix client installs a set of command line tools.
5.1 Windows Client

The Publications Office recommends to use TortoiseSVN. Alternative SVN clients are available. The screenshots in section 4 Procedure demonstrate the use of the TortoiseSVN Windows client for the most common tasks.

5.1.1 TortoiseSVN Windows Shell Extension

The Windows shell extension makes the Windows Explorer menu context sensitive; depending on whether a folder is known by SVN, you will see a different menu.

[image: image34.png]
Figure 9: Explorer Menu on Folder Managed by SVN

Short Description of the Most Useful Menu Options

SVN Update:
updates the local folder with the latest (HEAD) revision on SVN

SVN Commit:
updates the SVN repository with the contents of the local folder

Show log:
shows a history of changes for this folder

Repo-browser:
opens the repository browser; requires the URL to the repository and your login credentials
5.1.2 TortoiseSVN Repo-browser

The TortoiseSVN repository browser shows you the contents of your repository on the SVN server. You can use the Repo-browser to upload and download files and directories to and from the SVN server.

[image: image35.png]
Figure 10: Repo-browser Menu Items

Right-click anywhere in a Windows Explorer Window; in the pop-up menu, select Settings from the TortoiseSVN sub-menu to get to the screen where you can configure the general settings of TortoiseSVN:

[image: image36.png]
Figure 11: TortoiseSVN Sub-menu

Here you will be able to configure for example the proxy settings if you are behind a web proxy:

[image: image37.png]
Figure 12: TortoiseSVN Network Settings
Short Description of the Most Useful Menu Options

Show log:
right-click on any item in SVN to get a list of the history of changes

Export…:
copies items to a local hard disk without including SVN information

Checkout…:
copies items to a local hard disk together with the SVN information in hidden directories .svn

Copy to…:
copies items within a SVN repository (uses links to preserve disk space)
5.2 Command Line Client

The following examples demonstrate how the command line client can be used instead of a Windows client to execute the steps of the procedure.
· Copy contents of deliveries folder to DMTDMP-12345 installations subfolder

svn cp –r 246 –m "copying delivery for installation of DMTDMP-12345" https://webgate.ec.europa.eu/publications/svn/Project 1/deliveries https://webgate.ec.europa.eu/publications/svn/Project 1/installations/DMTDMP-12345

· List the differences between files previously checked out in the current directory and files in SVN:

svn status

A DMTDMP-12345/
A DMTDMP-12345/QA_install.doc

· Commit modified files to the SVN repository:

svn commit –m "QA document added"

Adding DMTDMP-12345/
Adding (bin) DMTDMP-12345/QA_install.doc
Transmitting file data .

Committed revision 253.
· Execute the following SVN command to check out the installations folder:

svn co "https://webgate.ec.europa.eu/publications/svn/Project 1/installations/DMTDMP-12345"
5.3 Web Interface

The contents of the SVN server can also be viewed using a web browser. Note that this access is read-only; to modify the repository on the SVN server you need an SVN client.
5.4 Submin Administration Interface

Submin is the Subversion web administration interface; it is used by the SVN administrators to create repositories and manage users and permissions.
SVN users are able to change their password here; this does not apply to internal users, whose password is synchronised with Windows Active Directory.
6 XCHANGE Repository

The XCHANGE repository was created to give all SVN users the possibility to exchange files with external parties. As it is intended as temporary storage only, the contents of the repository will be purged regularly; files and directories older than 30 days will be removed automatically on a regular basis.
Please note that revision numbers change on each clean-up operation.
All SVN users have read and write access to the XCHANGE repository.
https://webgate.ec.europa.eu/publications/svn/XCHANGE
URL to Access the XCHANGE Subversion Repository with an SVN Client
7 Continuous Integration
7.1 Purpose

The purpose of this section is to describe the automated processes integrated in a Hudson server, like the automated acceptance and the automated build processes. While the automated acceptance process has no impact on the procedure outlined in this document, the automated build process requires certain conditions to be met and an agreement on specifics of the software delivery procedure between the contractor, the project manager, and OP IT.

7.2 Risks
There is a risk that the delivered source code does not correspond to the delivered binary distribution. Only binary files that are built directly from the source code and subsequently installed on OP servers can guarantee that the delivered source code corresponds to the installed binary distribution.

There is a risk that building binary files from the source code depends on implicit third party software. All libraries required for the build process have to be provided together with the source code in order to eliminate dependencies on particular software installed on a development server. It must be possible to run a build process based only on the source code, the build script, and a library repository.
Continuous processes also help to improve the quality of software; well-defined processes that regulate and standardise the binary build reduce time and effort required for the installation.
7.3 Software Acceptance Process

A software delivery is subject to an acceptance phase where the contents of the delivery are inspected. Each software delivery and related files and documents (installation instructions, release note, testing scenarios, test report…) committed to the SVN deliveries folder of a repository is automatically processed with the help of a custom script launched by the Hudson server.
On each commit to a deliveries folder, a post-commit hook will trigger the acceptance script. The results of this script are analysed by the OP IT Test Team and parts which could not be analysed successfully by the acceptance script are checked manually.
7.4 Automated Build Process
Continuous integration mainly consists of:
· Maintaining source code in code repository
· Build automation
· Source code standard checks (static checks e.g. with findbugs, checkstyle)

· Build self-tests
· Presentation of build results
7.4.1 Pre-requisites

Application source code within an SVN repository may be built in an automated manner with the build scripts provided by the contractor. For the automated build to run successfully, a number of prerequisites must be met:
· The contractor must provide the software delivery as described in the delivery procedure in section 4 Procedure.
· The software delivery must follow the rules as described in section 2 Guidelines.

· The installation manual must contain information on how to configure the project build script (goals/targets and properties) within Hudson.

· The supported build tools are: sh shell scripts, Apache Ant, Apache Maven

· A global build configuration file is put in the trunk/build folder and can contain instructions or references to other build configuration files (e.g. to build components) in order to be able to build the project including sub-projects.
· Libraries required for the build must be present in the project Subversion repository in the trunk/lib folder or in the globally available public Maven library repository (from where they will be locally copied).
· The build scripts must be system independent e.g. paths in the script and directory names in Subversion must respect the Unix file system conventions regarding case sensitivity. Please note that the Solaris servers at OP support only locale “C” (no UTF-8 support).
· As the built binary files are used for installations on several servers (e.g. test and production environment), the configuration files (properties) for specific server environments must not be included in the binaries to make adaptations easier.
· The build process will run on the checked-out folder structure from the trunk folder; the build scripts used are contained in trunk/build.

7.4.2 Build Environment
Build scripts are executed on the Hudson server. Below is the information on the build environments already set up; the server can be extended with additional JVM versions and build tools. Projects should as much as possible use the installed build tools and JVM versions.
Environment variables available for the build process (other variables are not foreseen):

· JAVA_HOME

· ANT_HOME

· MAVEN_HOME

Currently installed build tools:
· sh shell
· apache-ant-1.8.4
· apache-maven-2.2.1
· apache-maven-3.0.4
Currently installed JDKs:
· jdk1.5.0_22
· jdk1.6.0_23
· jdk1.6.0_38

· jdk1.7.0_09
	[image: image38.jpg]
	For further information on how to customise the set-up of the build environment for individual needs, please contact an SVN Administrator (see section 8.4 Contact Data).

7.4.2.1 Hudson Build Set-up

Every build process will be configured as a free-style software project job. The required JDK for the build must be specified by the contractor:

[image: image39.png]
Hudson will be configured to check out the entire project repository within SVN from \<repository>\trunk (or \<repository>\<component>\trunk). The root directory of the build will always the trunk folder.
[image: image40.png]
Any individual build scripts must be referenced and called by the global build script. The build script must contain all necessary targets/goals in order to be able to produce the new build e.g. clean up, build and dist goals. All temporary files produced during the build must be cleaned up after each build run.

All previously built binary files must be removed. The resulting binaries are put in the local dist folder on the Hudson build server. Ideally, the dist folder will be cleaned up with the clean goal/target before each build.
The build process of every project, sub-project, or component will be launched by at least one build step (goal or target) which will invoke the required build tool e.g. ant. The contractor has to provide the configuration parameters for the build steps in the technical reference manual of the installation documents (for example, in case Ant is used: the Ant version, targets and the location of the main build file):
[image: image41.png]
It is possible to launch different goals/targets in different build steps in the global build script, if required. In this case the contractor must also specify the execution order of the build steps in the document. The number of build steps should be kept to a minimum.
If the sub-projects are independent of the main project in the SVN repository and have their own installation documents they can be configured using their own build configuration files.
	[image: image42.png]
	Any errors that occur during the build process will be provided to and must be solved by the contractor.

The log files of failed builds will be provided either in the QA_install document of the DMT or will be attached to the installations folder of the DMT within SVN.

Build logs can also be viewed on the Hudson build server console output view; however, there is no access to the Hudson build server from outside the OP network at this time.
7.4.2.2 Launch Build

To initialise the build process on the Hudson server, click on the BUILD tab on the Hudson home page, then click on the Job (application name) you want to launch. Click Build Now (see illustration below, you need to be logged in for the option to build an application to be available) and enter the revision number identified by the information in the Jira DMT; click the Build button.
[image: image43.png]
Figure 13: Hudson Build Screen
Check the progress in the Latest Console Output screen. The resulting binary files will be available in the Workspace/dist folder within the web interface of the Hudson server. Hudson projects are configured to copy the contents of the local dist folder for installation to a shared drive accessible (only within OP premises) at:

Windows: \\qaserver\QA\builds\build_<application>\dist_r<revision>
Unix: /net/qaserver/fs_QA/QA/builds/build_<application>\dist_r<revision>
8 Additional Information
8.1 Acronyms, Abbreviations

	Value
	Definition

	OP
	Publications Office of the European Union

	OP IT
	the IT department of the Publications Office

	Jira DMT/DMP
	Jira project that regulates software installations at OP

	<variable>
	names between <> should be regarded as variables

8.2 URLs

	URL
	Description

	http://subversion.apache.org/
	Apache™ Subversion® home page

	http://tortoisesvn.tigris.org/
	TortoiseSVN is a Subversion client, implemented as a Microsoft Windows shell extension.

	http://tortoisesvn.net/support.html
	documentation and support options for TortoiseSVN

	
	access to Subversion (this URL only works with an SVN client)

	
	WebSVN, read only access to Subversion through a web browser

	
	submin, the administration interface of SVN; users are able to change their password here (does not apply to internal users)

	http://svn.apache.org/repos/asf/subversion/trunk/doc/user/svn-best-practices.html
	Subversion Best Practices

	http://svnbook.red-bean.com/
	free book about Subversion

	
	Atlassian Jira (an issue tracking system) at OP

	
	Hudson build server at OP (not accessible from internet)

8.3 Reference Documents

	Title
	Description

	Software Acceptance Procedure
	describes the steps to take to introduce an application or application update on the servers of the Publications Office

	QA_install
	document that contains the original installation instructions and any remarks and additional information recorded by the integrator during installation; it serves as feedback to the project manager and the contractor

8.4 Contact Data

	Title
	Description

	
	email distribution list for the OP IT integration and test team

	
	email distribution list for the SVN administrators

Subversion delivery integration – v2.2 – December 2013

Page 1 of 1

[image: image45.png][image: image46.png]