
Overview – 1

STAR Streaming solution design
European Maritime Safety Agency

Overview – 2

Contents

1 Overview .. 3

2 Architecture ... 4
2.1 Services and ports used .. 4

3 Distribution .. 5

4 Remote Hub ... 7

5 Central Hub .. 9
5.1 BCF Cluster ... 11

6 Monitoring .. 12
6.1 Nagios ... 12
6.1.1 Overview.. 12
6.1.2 Requirements .. 13
6.1.3 Detailed View... 13
6.2 KSQL ... 15

7 EMSA Avro Enrichment System .. 16
7.1 JMS Source Connector ... 17
7.2 EMSA Avro Schema .. 17
7.3 Message Enrichment Process .. 24
7.4 Message Authentication Enrichment Process .. 24
7.5 Message Distribution ... 24

8 Real-time Dashboard .. 26
8.1 Logstash Processing ... 26
8.2 Index Template, Mapping and Lifecycle Policy ... 26
8.3 Kibana Visualizations and Dashboards .. 27
8.4 Elasticsearch Queries for Nagios Monitoring .. 27

Overview – 3

1 Overview

The STAR Streaming platform is a Kafka cluster that uses the Confluent Open Source distribution.

The main aim of this platform is to process AIS messages, decode them, apply filters, convert
them into other formats (CDF, JSON) and distribute them.

This is a high performant streaming platform that uses Kafka based architecture to handle the
needs regarding distributed generation of telemetry, processing and the delivery of those events
to distributed third-parties.

The main components of the architecture are described as follows:

¶ Remote Hub – Single-node stand-alone Confluent OS remote platform that is

independent of EMSA’s central cluster. Serves as a proxy to data providers so they can

still deliver messages as they normally do to a Kafka cluster;

¶ Central Hub – Multi-node distributed Confluent OS central hub on EMSA’s premises so

that all messages can be processed and distributed according to filtering and rules;

¶ Distribution – Using Confluent Connectors, Streams and Mirror-makers, build data

flows and connect systems to the platform;

¶ Monitoring –Monitoring services that allow for control and provide metrics information

for the platform.

¶ BCF environment – Shadow redundant environment managed by ’s Site Recovery

Manager. Relies on moving the disks between environments.

Architecture – 4

2 Architecture

In this section we describe the high-level architecture of the platform. Below is depicted the logical
architecture in terms of data flow.

As the picture shows, the remote hub will serve as proxy for the message providers, the messages
will go through an initial validation process that will check if the messages are valid. The valid
messages will them be obtained via Mirror Maker and replicated on the EMSA’s central hub.

Messages that arrived to central hub, will then be processed and filtered to be distributed back to
consumers. There are several ways to distribute messages, they can be delivered to JMS topics,
they can be delivered via REST endpoint and they can be delivered to a kafka topic using Mirror
Maker.

2.1 Services and ports used

In this section, not only the components used on the platform are described but also the
networking of the platform is presented. As it can be seen on the image below, the connectivity
between the hubs is always initiated by the Central Hub and is encrypted with 2-way SSL. NAT
rules must be configured between the Central and the Remote Hubs. These NAT rules ensure
outbound connectivity from the Kafka nodes to each of the Remote Hubs, removing the necessity
of multiple public IP addresses. Note that the public hostname of the remote-hub must be
resolvable by a DNS within the Central Hub hosts.

Of all the ports belonging to services in the Remote-Hub, only the port 9093 is required for
replication to work between environments.

The Ais-TCP Sink reads message from a single topic and exposes them on a socket on port
9090.

Kafka Broker Port 9093

Node 1 Node 2 Node 3

ZK ZK ZK

Kafka Broker Kafka Broker Kafka Broker

Kafka Connect Kafka Connect

Central Cluster

Node 4 Node 5

Mirror Maker Mirror Maker Mirror Maker Streams Streams

Schema Registry Schema Registry Schema Registry

JMS Connector JMS Connector

Rest Zip
Connector

Rest Zip
Connector

Application Port: xxxx
(e.g. JMS/REST)

Event Hub Port: xxxx

Remote Hub

ZK
Server
Auth

Kafka Broker

Schema Registry Kafka Connect

TCP Connector

Validator Stream

Valid Monitoring
Stream

Raw Monitoring
Stream

File Sink
Connector

AIS TCP Sink
Client
Auth

Ais Backlog

Messages Port 9093

Distribution – 5

3 Distribution

The concept of distribution is a combination of received messages and the application of filters
and validations that finally will be delivered to third-party systems.

The example below, depicts in a general way, how distributions are defined on the platform:

The AIS messages from the Message Producer are received on the TCP Connector and then
they are validated, decoded and ready to be replicated to the central cluster.

There’s customized Kafka streams services running on the central cluster, that will use the
replicated topics as a source and will process the messages into other topics. Each transformation
of the messages (filtering, format conversion, etc.), requires that the message moves from one
topic to another.

A distribution will have a combination of intermediate topics until it reaches the final topic with the
information to be distributed.

Kafka Connectors

Kafka Connect, an open source component of Apache Kafka, is a framework for connecting Kafka
with external systems such as databases, key-value stores, search indexes, and file systems.

Using Kafka Connect we can use connector implementations to move data into and out of Kafka.

Kafka Connect is focused on streaming data to and from Kafka, making it simpler to write high
quality, reliable, and high performance connector plugins. Kafka Connect can run either as a
standalone process for running jobs on a single machine, or as a distributed, scalable, fault
tolerant service supporting an entire organization. This allows it to scale down to development,
testing, and small production deployments with a low barrier to entry and low operational
overhead, and to scale up to support a large organization’s data pipeline.

There are two types of connectors, Source Connectors and Sink Connectors.

A Source Connector ingests data from any kind of source to Kafka topics making the data
available for stream processing with low latency.

Distribution – 6

A Sink Connector delivers data from Kafka topics into external non-Kafka systems, allowing for a
complete integration with third-party systems

For the platform a few connectors were developed to respond to EMSA needs:

¶ TCP Connector – A source connector where there’s a TCP server that is listening at a
defined port for new raw messages, after being received these will be converted to a pre-
defined Avro format and placed in a Kafka Topic.

¶ JMS Sink Connector – A sink connector that is waiting for new processed messages to
be received at a certain topic, when these arrive are sent to the pre-defined Weblogic
Server JMS topics. The destination queue is defined based on the type of the message
that is consumed from the topic, one for position messages and another for voyage.

¶ REST Zip Sink Connector – A sink connector that is waiting for new processed
messages to be received at a certain topic, when these arrive and a certain requirement
is fulfilled these are grouped, zipped and sent to a rest endpoint.

¶ File Sink Connector – A Kafka Connector that consumes messages from a kafka topic
with the Generic Avro Schema and writes them to a file. Messages are written to a file
which the name is the day from when they were consumed. In the current solution, this
connector is used for auditing purposes, as it writes all incoming messages to files on
disk.

¶ TCP Sink – A piece of software that enables the user to deploy a kafka consumer on a
topic that will wait for TCP connections and when a connection is established it will send
all the messages received from that moment onwards on topic to the TCP client that
connected.

¶ Monitor Sink Connector – A Kafka Connector that will consume the messages from the
monitor and will produce the count of messages received per originator during a time
interval to a file on disk. Since the monitor topic may have the same message but in
multiple stages of the validation/filtering process the connector will only count messages
from a pre-defined topic.

¶ JMS to Kafka Source Connector – A Kafka Connector that will consume messages
from a JMS Message Queue and convert the message to an Enrichment Avro Format
and later send the message to a given topic.

¶ Confluent JDBC Sink Connector – A Confluent Kafka Connector that will consume
messages from Kafka topics and distribute them into external databases.

Streams

Kafka Streams is a client library for building applications and microservices, where the input and
output data are stored in a Kafka cluster, meaning that the source and destination of the data are
Kafka topics. It combines the simplicity of writing and deploying standard Java and Scala
applications on the client side with the benefits of Kafka’s server-side cluster technology.

Using the Kafka Streams API we can implement standard Java applications to solve our stream
processing needs. Our applications are fully elastic: they can run in one or more instances and
they will automatically discover each other and collaboratively process the data. These
applications are also fault-tolerant: if one of the instances dies, then the remaining instances will
automatically take over its work without any data loss.

A Kafka Stream was developed in order to provide the platform with the capacity to validate, filter
and convert AIS messages into the desired data. This stream has different behaviors according
to the definitions passed through configurations files, meaning that the same stream can be
launched multiple times with different configurations to have different outputs.

Remote Hub – 7

4 Remote Hub

In order to make data providers compatible with the streaming platform, it is needed to provide

an infrastructure that acts like a buffer, is easy to maintain and is capable to receive AIS messages

in TCP protocol. The remote hub must be monitored remotely and should pre-process messages

before they are synchronized with central cluster. In case of downtime of central hub, the remote

hub should accumulate incoming messages until service is restored.

As such, these are the main features that are supported by the remote hub:

¶ TCP connector to receive AIS messages, including multi-line messages

¶ Kafka Stream service to apply pre-processing on incoming messages, such as:

o Message validation

Á Checksum

Á Invalid MMSI.

Á Invalid coordinates.

o Decoding

o Serializing

o Downsampling

¶ Kafka Streams that monitor the delta in time between messages arriving in the main entry

topic and after validation.

¶ Topic for Near Real Time messages (remote-parsed-raw)

¶ Topic for discarded messages that failed the validation (discarded-messages-avro-raw)

¶ Topic for backlog messages (backlog-messages-avro-raw)

¶ Topic for validated messages (valid-messages-avro-raw)

¶ Topic for Monitoring (monitoring)

¶ File Sink Connector that writes all the received messages by the TCP Connector in files

separated by a time unit (minute,hour,day)

¶ AIS TCP Sink Connector that supplies messages from a topic into port 9090

¶ AIS Backlog Source application that periodically checks a directory for ais message

backlog files and sends their contents to the TCP Connector.

The image below depicts the components in a Remote Hub. Each of the components work
together in order to receive, validate and persist AIS.

Remote Hub – 8

Remote Hub

All the services are installed as service unit files, which the execution is managed at the OS level.
Kafka Connectors, highlighted in purple, are managed by the Kafka-Connect component.
Furthermore, Kafka Streams, highlighted in Yellow use the Kafka APIs to validate and overlay
monitoring of the incoming messages.

The overall lifecycle of the message can be seen in the diagram below. The Kafka TCP Connector
is the entry point of AIS messages in the system. It is written to a topic, which is then consumed
by a validation Kafka Stream, a Monitoring Stream and the File-Sink Connector.

Note that all internal communication to the Kafka Broker from the other components is performed
through port 9091 which is bound to the localhost address. This way, the components do not
require any client certificate and transfer internal data in plaintext.

In the end, the Central-Hub consumes the messages from the valid messages topic and
monitoring topic, replicating messages from both source topics into corresponding destination
topics of the central hub.

It is important to note, that Kafka serves messages in parallel to all the consumers (Kafka Streams, File -

Sink Connector, etc.). The inner -workings of the Zookeeper and Schema-Registry are not depicted in the

image above. These, however, are substantial parts of the correct functioning of the Kafka service.

Zookeeper stores meta-data and the Schema-Registry organizes the schemas required for consuming and

producing the messages.

Central Hub – 9

5 Central Hub

This will be where all of the incoming messages will be processed and distributed. The central

hub analyzes all messages, filters, decodes, converts and finally distributes them to several

systems. This system follows a streaming architecture in order to provide near real time

processing capabilities.

As such, these are the main features that are present on the central cluster:

¶ Receive/synchronize all topics from remote hubs

¶ Kafka Stream service to process messages:

o Filter by geography (bounding box)

o Filter them by source (attribute in the message)

o Filter them by originator (attribute in the message)

o Filter them by flag (mid obtained from the MMSI)

o Filter them by message type.

o Filter them by timestamp.

o Transform messages into XML(CDF)

Á XSD validation is enforced and messages will be discarded if the

validation fails.

o Transform messages into JSON

¶ Distribute messages to legacy systems (leveraging throttling Confluent capabilities):

o JMS (JMS Sink Connector)

o HTTP/REST (zip file) (Rest Zip Sink Connector)

¶ Process backlog messages

¶ JMS to Kafka Connector that will obtain messages and place them in an Enrichment

Topic.

¶ Monitor topic.

¶ Monitor Sink Connector that counts the messages received by a given originator.

¶ KSQL Client to obtain metrics from the monitor topic.

¶ Enrichment of AIS distributed messages’ comment block with SSN relevant information

(Voyages, Exemptions, Incidents).

¶ Distribute AIS messages by source to separate DB tables.

¶ Convert VMS messages into CDF.

Central Hub – 10

All the components of the Central-Hub can be seen in the image below. The Central-Hub is

divided into two types of nodes: Kafka Nodes and Connect Nodes. The first host the Kafka

Brokers, as well as the Mirror-Maker instances responsible for replicating data from the Remote

Hubs. Connect Nodes host the Kafka Connectors and any Kafka Streams that perform processing

on the incoming messages.

For each Remote Hub, there will be three Mirror-Maker instances running in separate nodes.

These instances share the same group.id in order to achieve fault tolerance. The JMS connector

and Rest Zip connectors consume messages from a chosen topic and deploy them to the

corresponding end systems.

Node 1
Node 2 Node 3

ZK ZK ZK

Kafka Broker Kafka Broker Kafka Broker

Kafka Connect

Central Cluster
Node 4 Node 5

Mirror Maker Mirror Maker Mirror Maker Streams Streams

Schema Registry Schema Registry Schema Registry

JMS Sink
Connector

Rest Zip Sink
Connector

Kafka Connect

JMS Sink
Connector

Rest Zip Sink
Connector

JMS Source
Connector

JMS Source
Connector

The message lifecycle of the Central-Hub is much simpler in its basic form. It replicates messages
from two topics of the remote and maps them to corresponding topics in the Central-Hub. For
each Remote Hub, there will be one corresponding monitoring topic in the Central-Hub. This topic
is named using the Remote Hub prefix code (e.g. <remote-hub-prefix>-monitoring-mm – xls-
monitoring-mm).

All valid messages from Remote Hubs are replicated into a single centralized topic named “valid-
messages”.

Remote Hub
Kafka

Mirror-Maker
Central-Hub
Kafka Nodes

Reads from topics:
valid-messages-avro-raw

monitoring Writes to topics:
valid-messages

<remote-hub->-monitoring-mm

Central Hub – 11

After the message is replicated to the Central-Hub, Kafka Connectors and Kafka Streams
consume from input topics. These can be directly from any of the replicated topics or intermediate
topics which were processed by Kafka Streams.

5.1 BCF Cluster

The BCF cluster involves the use of the VMware’s Site Recovery Manager framework. This
framework is responsible for asynchronously keeping up snapshots of all the Virtual Machines
deployed in a Central-Hub. Designed for disaster recovery, this means that in the case of a
failover necessity, the Central-Hub hosts will be brought up in a different data center.

In the case of Kafka Nodes (nodes 01 to 03), the snapshotting of the VM disks must be performed
at the same time. This is because Kafka and Zookeeper are distributed systems. Unsynchronized
disk states can lead to meta-data corruption and unavailability of the services.

When the recovery process is taking place, the Kafka Nodes should also be the ones to be started
first.

The shadow hosts preserve the same hostnames between environments. Since the hostnames
are resolvable by DNS, no communication issues should occur.

The usage of the Site Recovery Manager tool is yet to be tested in such distributed environment.

Monitoring – 12

6 Monitoring

Overview

The STAR Streaming platform has two types of monitoring to ensure the platform is working
correctly.

One type of monitoring is done in terms of infrastructure and services, meaning that we’ll be able
to assess if all components of the platform and up and running. For this type of monitoring, the
technology used is Nagios with the help of some plugins.

The other type of monitoring is a more applicational/operational monitoring of the messages and
the message flow. For this type of monitoring, we used the same kafka streaming capabilities in
order to gather metrics for each message along the pipeline they go through and then have some
analytic querying on top of that using KSQL.

6.1 Nagios

6.1.1 Overview

The Nagios monitoring deployment is based on a series of plugins and the NRPE agent. The
Nagios server-side configuration is responsibility of GMV, and as such, no automated setup is
performed for the Nagios Server. The overall architecture is shown in the diagram below:

For the shown monitoring infrastructure, communication from the Nagios Server to the specified
ports must be guaranteed. The displayed ports correspond to service ports as well as the NRPE
agent port (5666).

The Nagios service definitions should be divided into 4 service groups:

¶ Main Services (OS level services): These services include the list of services that are
managed at the OS level. These include: Zookeeper, Kafka, Schema-Registry, Kafka-
Connect and KSQL.

¶ Mirror-Maker Services: These include the Mirror-Maker instances running on the Kafka
Nodes.

¶ Kafka Streams: These include all the Streams running in the Connect Nodes.

¶ Kafka Connectors: These include the connectors running under the Kafka Connect
service (JMS Connector and Rest Zip Connector).

Nagios executes a series of plugins to check the health of the services. The Main Services’ checks
are performed directly by the Nagios Server. NRPE is responsible for reporting back to the Nagios
Server.

Monitoring – 13

6.1.2 Requirements

In order for the monitoring infrastructure to work, the Nagios Server host must have the needed
plugins, as well as the network connectivities to the hosts.

The list of plugins that need to be installed are:

¶ check_nrpe – Plugin to issue commands to the NRPE agents

¶ check_http_port – Checks if an HTTP port responds to GET requests

¶ check_tcp – Checks if connections can be established to a unix socket view TCP

¶ check_http_json.py – Analyses JSON responses from an endpoint.

All the plugins, except for the check_http_json.py are available through official Nagios plugins
repositories. The latter is available here and requires python binaries to be executed.

The following connectivities should also be guaranteed:

Origin Network Destiny Network Ports

Nagios Server Kafka Node Zookeeper – 2181 (JMX 2189)

Nagios Server Kafka Node Kafka – 9092 (JMX 9989)

Nagios Server Kafka Node Schema-Registry – 8081

 Nagios Server Central Hub NRPE – 5666

Nagios Server Connect Node Kafka-Connect – 8083

The JMX monitoring also requires the internal central-hub hostname resolution from the Nagios
Server.

6.1.3 Detailed View

6.1.3.1 Kafka Nodes

The Kafka nodes hold the part of the Main Services group and the Mirror-Maker services. The
first are checked directly by the Nagios Server by analyzing the respective ports. The latter are
checked by issuing commands to the NRPE agent.

Main Services

The check command for these types of services in this node should be similar to

¶ Kafka – check_tcp port 9092

¶ Zookeeper – check_tcp port 2181

¶ Schema-Registry – check_http_port 8081

NRPE also has the restart commands for each of these services with the following nomenclature:

 restart_main_service_<service-name> - The service-name can take the following values:
kafka. zookeeper or schema-registry.

Mirror Maker instances

The Mirror-Maker instances NRPE command follows a nomenclature. For each Remote Hub MM,
there will be the following commands in NRPE:

¶ check_mirror_maker_<remote-hub-prefix> - Checks if there is at least one process of
Mirror Maker for the particular Remote Hub

¶ restart_mirror_maker_<remote-hub-prefix> - Starts the Mirror-Maker instance for the
specific Remote Hub

The corresponding service definition uses the check_nrpe plugin with the appropriate NRPE
command above as the argument.

https://github.com/drewkerrigan/nagios-http-json

Monitoring – 14

6.1.3.2 Connect Nodes

The Connect Nodes hold the Kafka-Connect main service as well as the services of the Kafka
Streams and Kafka Connectors group.

Main Services

The check command is performed by the Nagios Server and should be similar to:

¶ Kafka-Connect - check_http_port 8083

Kafka Streams

The NRPE agent in these hosts hold the commands definitions for checking and starting streams.
The commands follow the nomenclature below:

¶ check_stream_<properties-file-name> - The properties file name should be the same in
the configured node’s streams directory

¶ restart_stream_<properties-file-name> - The properties file name should be the same in
the configured node’s streams directory

Kafka Connectors

The state of the Kafka Connectors is performed by the Nagios server by analyzing the response
of the Kafka-Connect endpoint.

The check command must be similar to the example below:

¶ /check_http_json.py -H <HOST> -P 8083 -p connectors/<connector-name> -Q
connector.state,RUNNING - The <connector-name> should be the Kafka-Connect
connector name.

6.1.3.3 Consumer Lag

Kafka Consumer Lag is an important metric that helps understand whether or not Kafka clients
are healthy and keeping up with the pace of ingestion. The current solution integrates Nagios
probes with csv written on disk by services which periodically check the consumer lag for a
specific group for a specific topic.

This solution is based on system timers that schedule the execution of a script which uses the
standard Kafka CLI tools. The default rate is to check every 30 seconds, while Nagios only
interacts with the data every 5 minutes.

The following schematic provides an insight on how it works.

NAGIOS Server
Kafka Broker

Kafka Broker
Kafka Broker

<name>.csv

check-lag-<consumer-
group>_<topic>.timer

check-lag-<consumer-
group>_<topic>.service

check-lag.sh script

5. Reads file

3. Fetches lag data

4. produces csv

2. executes

1. schedules

Monitoring – 15

This is a temporary solution and should not be relied upon as a complete transversal Kafka
Consumer Group lag monitoring solution. The check procedure runs on a single node and can be
performed in any host of the Central-Hub.

6.2 KSQL

KSQL is the streaming SQL engine for Apache Kafka®. It provides an easy-to-use yet powerful
interactive SQL interface for stream processing on Kafka, without the need to write code in a
programming language such as Java or Python. KSQL is scalable, elastic, fault-tolerant, and real-
time. It supports a wide range of streaming operations, including data filtering, transformations,
aggregations, joins, windowing, and sessionization.

KSQL is divided into two main components:

¶ KSQL Server

¶ KSQL CLI (Command Line Interface)

KSQL servers, clients, queries, and applications run outside of Kafka brokers, in separate JVM
instances, or in separate clusters entirely.

The KSQL Server runs the engine that is responsible for executing the KSQL queries. This
includes processing, reading, and writing data to and from the target Kafka cluster. KSQL Servers
can work together to elastically scale according to the processing needs

The server exposes a REST API for the interaction with the underlying engine.

The CLI serves as a command line interface to the REST API exposed by the KSQL Server. You
can interactively write KSQL queries by using the KSQL command line interface (CLI).

Below is possible to see how KSQL interacts with the cluster:

EMSA Avro Enrichment System – 16

7 EMSA Avro Enrichment System

Overview

The EMSA Avro Message Enrichment system will retrieve messages from a JMS Message queue
and apply enrichment steps depending on the message that is currently being enriched.

The first step is obtaining the message from a pre-defined JMS Message queue, transform the
message and sent it to a Kafka topic, this is done by a Kafka-Connect custom implementation.

The second step will validate messages using Kafka Streams and store it in a Kafka Topic with
the EMSA Avro schema.

Finally, a Kafka Streams application will selectively enrich messages with information from
external sources and store it in another EMSA Avro schema Kafka Topic.

Figure 1 – JMS Source Kafka Connector

EMSA Avro Enrichment System – 17

Figure 2- Message Enrichment Flow

7.1 JMS Source Connector

This custom Kafka-Connect implementation is responsible from obtaining the messages from a
JMS queue and create a struct with the content of the message, after this process the message
will then be placed in a Kafka Topic.

This first process will produce the message into Kafka in a yet to be validated Avro Format. This
intermediate step is required because Kafka-Connect does not use the same Avro Schema class
as regular Kafka does.

The first step produces the messages to the unvalidated-jms-source topic.

7.2 EMSA Avro Schema

The enrichment process will use the pre-defined EMSA AVRO Schema as the structure of
communication and information storage, but as stated in the previous section a conversion step
must occur in order to produce the desired AVRO from the struct produced by the Connector.

From the pre-defined EMSA Avro Schema (.avsc file) the corresponding java class is generated
(Specific Avro Schema). The schema defined in the .avsc file will also be used to bind the schema
to the topics of the enrichment process so that schema compatibility is enforced.

The conversion between the struct produced by the Connector and the desired Avro will occur in
a conversion Kafka-Stream where the values present in the struct will be mapped to the EMSA
Avro Schema that will then be sent to the first topic of the enrichment process.

The validation process reads the messages from the unvalidated-jms-source topic and outputs
to the validated-emsa-avro-messages topic. The messages that fail validation are recorded to
the discarded-emsa-avro-messages topic.

EMSA AVRO schema:

Value
Occ

message_id
1

position_id
1

source
1

EMSA Avro Enrichment System – 18

timestamp
1

originator
1

requestor
0-1

authorized_roles
0-*

longitude
1

latitude
1

speed_over_ground
0-1

courser_over_ground
0-1

navigational_status
0-1

true_heading
0-1

heading
0-1

rate_of_turn
0-1

validity_flag
1

source_specific
0-1

AisSpecific
0-1

message_type
1

position_accuracy
1

raim_flag
1

nmea
1

SatAisSpecific
0-1

message_type
1

position_accuracy
1

raim_flag
1

nmea
1

satellite_id
0-1

ground_station_identifier
0-1

ground_station_acquisition_ts
0-1

data_centre_ingestion_ts
0-1

data_centre_delivery_ts
0-1

frequency_of_arrival
0-1

time_of_arrival
0-1

doppler_signal_level
0-1

doppler_signal_noise_ratio
0-1

doppler_channel_id
0-1

data_flow_id
0-1

LritSpecific
0-1

message_type
1

response_type
1

reference_id
1

message_id
1

VmsSpecific
0-1

naf
1

fishing_serial_trip_number
0-1

particulars
1

EMSA Avro Enrichment System – 19

csd_id
0-1

emsa_id
0-1

imo
0-1

mmsi
0-1

ir
0-1

name
0-1

call_sign
0-1

flag_state
0-1

ship_enrichment
0-1

source
1

timestamp
1

particulars
0-1

csd_id
0-1

emsa_id
0-1

imo
0-1

mmsi
0-1

ir
0-1

name
0-1

call_sign
0-1

flag_state
0-1

ship_type
0-1

banned
0-1

single_hull_tanker
0-1

position_fixing_device
0-1

detained
0-1

ship_risk_profile
0-1

priority_of_inspection
0-1

eligible_for_esp_inspection
0-1

eligible_for_banning
0-1

dimensions
0-1

BeamAndLength
0-1

beam
1

length_overal
1

ShipDimensions
0-1

a
1

b
1

c
1

d
1

voyage_enrichment
0-1

source
1

timestamp
1

ssn_voyage_id
1

ship_call_id
1

last_port
0-1

EMSA Avro Enrichment System – 20

PortInfo

name
0-1

locode
1

eta
0-1

ata
0-1

atd
0-1

location_in_port
0-1

port_of_call
1

PortInfo

name
0-1

locode
1

eta
0-1

ata
0-1

atd
0-1

location_in_port
0-1

next_port
0-1

PortInfo

name
0-1

locode
1

eta
0-1

ata
0-1

atd
0-1

location_in_port
0-1

pob
0-1

hazardous_materials
0-1

waste_delivery_status
0-1

current_security_level
0-1

bunkers_reported
0-1

incident_enrichment
0-*

source
1

timestamp
1

type
1

incident_id
1

mrs_enrichment
0-1

source
1

timestamp
1

mrs_notification
1

cst_identification
0-1

next_port
0-1

PortInfo

name
0-1

locode
1

eta
0-1

ata
0-1

EMSA Avro Enrichment System – 21

atd
0-1

location_in_port
0-1

pob
0-1

any_dg
1

longitude
1

latitude
1

reporting_date_and_time
1

exemption_enrichment
0-1

source
1

timestamp
1

type
1

company_name
1

from
1

to
1

route_port
1

exemption_applies_to
0-1

authority
1

locode
0-1

Example AVRO message:

An example of a message in the PositionReport avro format after full enrichment process.

{

 "authorised_roles": {

 "array": [

 "ROL_VIEW_TAIS_HELCOM",

 "ROL_VIEW_TAIS_EU",

 "ROL_VIEW_TAIS_OWN",

 "ROL_VIEW_POSITIONS_ALL"

]

 },

 "course_over_ground": {

 "float": 39.0

 },

 "exemption_enrichment": {

 "eu.eu ropa.emsa.cdf.avro.ExemptionEnrichment": {

 "authority": "GB",

 "company_name": "Stena",

 "exemption_applies_to": {

 "array": [

 "GBKGH"

]

 },

 "from": 17757,

 "locode": {

 "eu.europa.emsa.cdf.avro.LocationCode": "GBSOU"

 },

 "route_port": [

 "GBKGH"

],

 "source": "test",

 "timestamp": 1564 499050615,

 "to": 19582,

 "type": "PRE_ARRIVAL"

 }

 },

 "heading": null,

 "incident_enrichment": {

 "array": [

 {

 "incident_id": "IT5SYpcQOIQpN7v7d",

EMSA Avro Enrichment System – 22

 "source": "test",

 "timestamp": 1564499050608,

 "type": "SITREP"

 },

 {

 "incident_id": "IT8FQaXyN5lcFfCtg",

 "source": "test",

 "timestamp": 1564499050608,

 "type": "OTHERS"

 }

]

 },

 "latitude": 63.447964,

 "longitude": - 20.031631,

 "message_id": "test",

 "mrs_enrichment": {

 "eu.europa.emsa.cdf.avro.MrsEnrichment": {

 "any_dg": false,

 "cst_identification": null,

 "latitude": 33789000.0,

 "longitude": 7395999.0,

 "mrs_notification": "SOUNDREP",

 "next_port": {

 "eu.europa.emsa.cdf.avro.PortInfo": {

 "ata" : null,

 "atd": null,

 "eta": null,

 "location_in_port": null,

 "locode": "SEMMA",

 "name": null

 }

 },

 "pob": {

 "int": 17

 },

 "reporting_date_and_time": 1547349120000,

 "source": "test",

 "timestamp": 1564499050612

 }

 },

 "navigational_status": null,

 "originator": "ISL",

 "particulars" : {

 "call_sign": null,

 "csd_id": null,

 "emsa_id": {

 "string": "23342334"

 },

 "flag_state": null,

 "imo": null,

 "ir": null,

 "mmsi": {

 "long": 251011000

 },

 "name": null

 },

 "position_id": 295170634794987646,

 "rate_of_turn": {

 "double": 720.0

 },

 "requestor": null,

 "ship_enrichment": {

 "eu.europa.emsa.cdf.avro.ShipEnrichment": {

 "banned": null,

 "detained": null,

 "dimensions": {

 "eu.europa.emsa.cdf.avro.ShipDimensions": {

 "a": 12.0,

 "b": 30.0,

 "c": 4.0,

 "d": 4.0

 }

 },

 "eligible_for_banning": null,

 "eligible_for_esp_inspection": null,

 "particulars": {

EMSA Avro Enrichment System – 23

 "eu.europa.emsa.cdf.avro.ShipParticulars": {

 "call_sign": {

 "string": "TFTV"

 },

 "csd_id": {

 "long": 163606

 },

 "emsa_id": {

 "string": "1585292"

 },

 " flag_state": null,

 "imo": {

 "eu.europa.emsa.cdf.avro.ImoNumber": "8303410"

 },

 "ir": null,

 "mmsi": {

 "long": 251011000

 },

 "name": {

 "string": "BRYNJOLFUR"

 }

 }

 },

 "position_fixing_device": null,

 "priority_of_inspection": null,

 "ship_risk_ profile": null,

 "ship_type": {

 "eu.europa.emsa.cdf.avro.ShipType": "315"

 },

 "single_hull_tanker": null,

 "source": "T - AIS",

 "timestamp": 1553602963000

 }

 },

 "source": "T - AIS",

 "source_specific": {

 "eu.europa.emsa.cdf.avro.AisSpecific": {

 "message_type": "CLASS_A",

 "nmea":

" \ \ i:<O>ISL</O>,c:1553602690*56 \ \ !AIVDM,1,1,,A,13gHOf?Oh8NTCFrTCR:QQbBH00S?,0*14",

 "position_accuracy": "LOW",

 "raim_flag": false

 }

 },

 "speed_over_ground": {

 "float": 0.8

 },

 "timestamp": 1553602690000,

 "true_heading": {

 "float": 329.0

 },

 "validity_flag": "U",

 " voyage_enrichment": {

 "eu.europa.emsa.cdf.avro.VoyageEnrichment": {

 "bunkers_reported": null,

 "current_security_level": null,

 "hazardous_materials": {

 "boolean": false

 },

 " last_port": {

 "eu.europa.emsa.cdf.avro.PortInfo": {

 "ata": null,

 "atd": null,

 "eta": null,

 "location_in_port": null,

 "locode": "SEMMA",

 "name": null

 }

 },

 "next_port": {

 "eu.europa.emsa.cdf.avro.PortInfo": {

 "ata": null,

 "atd": null,

 "eta": {

 "long": 1547708400000

 },

EMSA Avro Enrichment System – 24

 "location_in_port": null,

 "locode": "RULED",

 "name": null

 }

 },

 "pob": {

 "int": 18

 },

 "port_of_call": {

 "ata": null,

 "atd": null,

 "eta": {

 "long": 1547594400000

 },

 "location_in_port": null,

 "locode": "EEPLS",

 "name": null

 },

 "ship_call_id": "19LK - 00049",

 "source": "test",

 "ssn_voyage_id": "19LK - 00049#EE",

 "timestamp": 1564499050519,

 "waste_ delivery_status": {

 "eu.europa.emsa.cdf.avro.WasteDeliveryStatus": "SOME"

 }

 }

 }

}

7.3 Message Enrichment Process

In this process messages will be enriched using Kafka-Streams applications. For each message
obtained from a source topic the Kafka-Stream application will apply a SafeSeaNet (SSN)
enrichment either by filling AVRO schema fields with new information or by replacing fields values
with newer ones.

Messages processed are placed in different topic but will maintain the same Avro Schema.

The enrichment process reads messages from the validated-emsa-avro-messages and outputs
them to the enriched-emsa-avro-messages topic.

This enrichment is done from files that are refreshed at a defined rate, this consists in invoking
the SSN REST API for the SSN enrichment data (Voyage, Exemption, MRS and Incident) and
updating each corresponding file with the received data.

7.4 Message Authentication Enrichment Process

The message authentication process will assign authentication roles to each of the messages
obtained from the source topic. Like the enrichment process this will also use a Kafka-Streams
application to assign roles to messages.

The roles that will be enriching the messages, in a similar manner to SSN enrichment, will be
present at a policy-store file that will also be updated at a defined rate.

7.5 Message Distribution

After the full enrichment process occurs messages can be distributed to specific topics by using
filtering applied to the messages corresponding values.

This process will use Kafka-Streams and messages will be filtered by:

EMSA Avro Enrichment System – 25

¶ Source;

¶ Bounding Box;

¶ Ship type;

¶ Authentication Roles.

Real-time Dashboard – 26

8 Real-time Dashboard

Overview

The purpose of the real-time dashboard is to provide real-time analytical and monitoring
information in the form of visualizations.

A Logstash process consumes events from Kafka topics, processes them to extract additional
information and writes them to Elasticsearch indexes. These events are stored using the sst-
events template and follow a specified lifecycle.

Kibana produces visualizations through REST queries to the Elasticsearch indexed events. These
visualizations are grouped into easy-to-use dashboards.

This setup will also allow Nagios to monitor events through queries to the Elasticsearch REST
API.

8.1 Logstash Processing

A Logstash process consumes events from one or multiple Kafka topics, parses fields of interest
and then enriches the events with latency, geo position and other information required for specific
visualizations before indexing them in Elasticsearch. This pipeline is specified as a Logstash
configuration file.

Elasticsearch time-based rolling indexes are created automatically using the predefined sst-
events index template.

8.2 Index Template, Mapping and Lifecycle Policy

Index templates are stored in an Elasticsearch REST API endpoint under _template/. The sst-

events template that will set the properties of all Logstash created indexes specifies:

¶ The index settings (number of shards, number of replicas, …)

¶ The index lifecycle policy to be used

¶ The index mappings

Index lifecycle policies are stored in an Elasticsearch REST API endpoint under _ilm/policy/. They

will specify the actions (make read-only, freeze, delete, etc) to be taken at defined points of each

index lifecycle.

Real-time Dashboard – 27

Index mappings, that set the allowed event fields and corresponding datatypes, will be non-

dynamic.

8.3 Kibana Visualizations and Dashboards

Kibana produces visualizations by executing complex REST queries to Elasticsearch and building

graphics over the response data. These visualizations can include events from multiple indexes

that match a Kibana index pattern.

Visualizations will be accessible in interactive dashboards with controllers that also allow custom

time windowing and custom filtering. The following dashboards will be included:

¶ AIS Delivery Volume Metrics
Ǒ Reported Position Density Map
Ǒ Volume Overview
Ǒ Message volume by Hub over Time
Ǒ Message Type distribution by Hub
Ǒ Sat-AIS Message Volume by Satellite over Time
Ǒ Sat-AIS Distribution by Satellite by Originator
Ǒ Message Volume Hub-Originator Heatmap
Ǒ Message Volume Hub-Source Heatmap

¶ AIS Delivery Latency Metrics
Ǒ Average External Latency Map
Ǒ Latency Overview
Ǒ Average External Latency by Hub over Time
Ǒ Average External Latency by Originator over Time
Ǒ Average External Latency Hub-Source Heatmap
Ǒ Average External Latency Hub-Originator Heatmap
Ǒ Average Internal Latency over Time
Ǒ Average Total Latency over Time

¶ Kafka Topic Metrics
Ǒ Message Volume by Kafka Topic over Time
Ǒ Kafka Average Processing Latency by Topic over Time

8.4 Elasticsearch Queries for Nagios Monitoring

In the same way Kibana uses Elasticsearch REST API to build its visualizations, Nagios will probe

Elasticsearch for the same data for monitoring purposes.

